
Copyright 2000 IEEE. Published in the 2000 International Conference on Image Processing (ICIP-
2000), scheduled for September 10-13, 2000 in Vancouver, BC. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or li sts, or to reuse
any copyrighted component of this work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

AN EFFICIENT COLOR RE-INDEXING SCHEME FOR PALETTE-BASED
COMPRESSION

 Wenjun Zeng, Jin Li* and Shawmin Lei

Sharp Laboratories of America

*Microsoft Research, Beiji ng, China

ABSTRACT

This paper presents a fast and eff icient way for color re-
indexing that tends to maximize the compression
performance of a palette-based compression system. The
proposed scheme relates the index difference of
neighboring pixels to the potential cost of bits. It optimizes
the assignment of index values to colors in a one-step
look-ahead greedy fashion. Experimental results suggest
that the proposed re-indexing scheme can reduce the bit
rate by up to 43%, when compared to a previously
proposed intensity-based color-indexing scheme.
Furthermore, we show that with the proposed color re-
indexing scheme, the palette-based JPEG-LS and palette-
based JPEG-2000 can often outperform GIF significantly.

1. INTRODUCTION

Image compression usually operates on one or multiple
intensity planes of digitized images. However, for images
that consist of only a small number of colors, e.g.,
computer graphics, it is also a common practice that each
color is mapped to an index and the indexes of the pixels
are then compressed, usually losslessly. Since the size of
the index space is much smaller than that of the color
intensity space, this color palette approach usually can
achieve better compression eff iciency for images with a
limited number of colors. This feature has been adopted by
GIF (the Graphical Interchange Format), JPEG-LS [1] (the
standard for lossless and near-lossless compression of still
images), and most recently, the emerging still i mage
compression standard JPEG-2000 [2][3].

Highly compressed palettized images are needed in
many applications such as game cartridges and World
Wide Web (WWW) on-line services. Many images used
in the WWW are stored and transmitted as GIF files,
which use Lempel-Ziv compression. The Lempel-Ziv
compression, however, treats the image as a one-
dimensional sequence of index values, ignoring the two-
dimensional nature of image data. It may not have the best
possible compression performance.

Natural digital images are generally the result of the
quantization of waveforms, hence many characteristics of

the original signal such as smoothness are preserved. With
palettized images, this smoothness may not always be
present. However, it has been recognized that the index
image can be re-indexed without losing any information,
as long as the color palette table changes accordingly. It
turns out that some indexing schemes tend to produce
more compressible index image than others [4][5]. There
is thus a freedom to choose an appropriate indexing
scheme to maximize the compression performance.

In Section 2, we present a fast and eff icient way for
color re-indexing that tends to maximize the compression
performance. Instead of treating the problem as a general
smoothness maximization problem [5], the proposed
scheme relates the index difference of neighboring pixels
to the potential cost of bits. It optimizes the assignment of
index values to colors in a one-step look-ahead greedy
fashion. Experimental results suggest that the proposed re-
indexing scheme can reduce the bit rate by up to 43%,
when compared to a previously proposed color-indexing
scheme [4]. It is also shown that, with the proposed color
re-indexing scheme, the palette-based JPEG-LS and
palette-based JPEG-2000 can often outperform GIF (by up
to 60% bit-saving). The proposed scheme has been
adopted in the JPEG-2000 verification model software [6].

2. AN EFFICIENT RE-INDEXING SCHEME

Essentially, we would like to address the problem of re-
indexing an index image/map so that the resulting index
map is easier to compress. Notice that the index image
has the following properties. The number of colors is
usually limited, much less than that of a natural image.
Pixels with the same index tend to cluster together. Within
a region of the same index, the compression eff iciency is
very high, and is usually independent of the index value.
What consumes a lot of bits is to code the index values
around transitions of different regions that have different
index values. In general, the larger the difference of the
neighboring index values, the more bits it takes to code.

Based on the above observations, our goal is to come
up with a re-indexing scheme that tends to reduce the
overall difference of index values of adjacent pixels. Fig.
1 shows a re-indexing data compression system. The

original image is palettized into an index image I and a
color palette table T. Table T shows the corresponding
color of each index value. The palettization process could
be lossy, and usually does not take into account the
subsequent lossless compression. For some compression
algorithms, such as Lempel-Ziv, the compression
eff iciency does not depend on the indexing scheme.
However, the indexing scheme often does affect the
performance of many other subsequent lossless
compression algorithms. Therefore, the proposed re-
indexing scheme will t ake the initial index image I as
input, and output a re-indexed index image I’ . The color
palette table needs to be re-organized accordingly. The
new index image I’ , in general, tends to be smoother than
the initial index image I, thus is more amenable to most
lossless compression algorithms. At the decoder, the index
image I’ and the color palette table T’ are retrieved from
the compressed bitstream and then used to reconstruct the
image to be displayed.

Given a re-indexing criterion, the optimal solution can
be obtained by looking at every possible re-indexing map.
Suppose there are M different colors, then an exhaustive
search needs M! trials. As M increases, it quickly becomes
impractical to do such a search. This is sometimes
referred to as an N-P complete problem in computational
optimization. The goal here is thus to identify an
appropriate re-indexing criterion that can characterize the
compression performance, and to come up with a greedy
sub-optimal solution that is simple to implement.

Suppose in the initial index image, the index values
0,1,…, M-1 represent color symbols S0, S1, …, SM-1,
respectively. We would like to create a one-to-one re-
indexing table that maps each symbol Si to a new index
value that also takes one integer value in the range [0, M-
1]. We propose here a method that re-indexes one symbol
at a time in a greedy fashion. Each re-assignment is
optimized based on the statistics collected from the initial
index image and previously executed re-assignments. The
statistics gathered from the initial index image is a table
that indicates the cross-counts C(Si, Sj) of two different
symbols Si and Sj. The cross-count C(Si, Sj) is defined as
the number of occurrences that a pixel with symbol Si is
spatially adjacent to a pixel with symbol Sj in the initial
index image. Thus, C(Si, Sj) = C(Sj, Si). The observation
here is that it is advantageous to assign close index values
to symbols that are frequently located next to each other.
This tends to reduce the overall i ndex difference of
adjacent pixels, resulting in a smoother index image.

The proposed re-indexing scheme is outlined here,
followed by an analysis.

Step 1: Calculate the cross-counts C(Si, Sj) for each
pair of symbol Si and Sj based on the initial index image.
Calculate the cumulative cross-counts Ci=∑j=0,j≠i

M-1 C(Si,
Sj) for each symbol Si.

Step 2: Find the symbol Smax that has the largest
cumulative cross-counts Ci. Denote it as L0. Put L0 in a
symbol pool P, i.e., P={ L0 } at this point. P will consist of
spatially ordered symbols. Denote the size of P as N, and
set N=1. A new entry can enter P only from either the left
end or the right end. Once a symbol enters the pool P, it
will be indicated as assigned.

Step 3: A new unassigned symbol will be chosen and
assigned to the left or the right end position of the pool P.
Let us first consider the left end position. The unassigned
symbol Si that maximizes the potential function Di=∑j=0

N-

1 w(N, j) C(Si, Lj) will be chosen, where w(N, j) are some
weights controlli ng the impact of C(Si, Lj) on the overall
potential function Di. In general, w(N, j) will depend on
the physical distance between the current end position of
the pool P and the position of Lj. The parameter N is used
to indicate that the weight w(N, j), in general, may change
after each iteration. A good choices of w(N, j) is log2 (1+1/
d(N,j)) where d(N,j) is the physical distance between the
position of Lj and the end position, as analyzed in the
following. Denote this chosen symbol as SLmax. Similarly,
SRmax can be chosen for the right end position of P.

Step 4: One of SLmax and SRmax that has the larger
potential function value Di is assigned to the
corresponding end position in the pool P, and is denoted
as LN. Set N=N+1. An example of the status of P is P = {
L3L0L1L2 } for N=4.

Step 5: If (N < M), go to Step 3.
Step 6: Assign integers 0, 1, …, M-1 to the spatially

ordered symbols in the pool P in left-to-right or right-to-
left order. A re-indexed index image is generated by
replacing the initial index value i with the new index value
assigned to Si.

Analysis:
Some critical points for the proposed scheme are

analyzed here. The re-indexing starts with the symbol that
is most frequently located adjacent to other symbols.
Notice that it is the difference of two neighboring pixel
index values, rather than the index values themselves, that
matters. Therefore, we use the symbol Smax as a reference
point, and assign the symbol that is most frequently
located adjacent to Smax right next to it, i.e., the new index
values of these two symbols are next to each other.

Given a set of already assigned index values (which
span a continuous range of integer values), the next step is
to determine which remaining symbol should be assigned
the upper-bound index value or the lower-bound index
value. This is realized in Step 3 of the above outline. The
scheme is greedy in the sense that the new symbol can
only be allocated to the left or right end position of the
pool P. Within this constraint, we seek to optimize each
new allocation. How to choose an appropriate allocation
criterion is a critical issue. The measure Di used in Step 3,
in some sense, measures how often pixels marked with the

candidate symbol are located adjacent to pixels marked
with already assigned symbols. One particular choice of
the weight w(N, j) may be better for a specific subsequent
lossless coding scheme than for others. It will be shown
that our particular choice of log2 (1+1/ d(N,j)) for w(N, j) is a
justifiable, perhaps near optimal choice if LOCO-I/JPEG-
LS [1][7] is to be used to code the index image losslessly.

LOCO-I follows a traditional predictor-modeler-coder
structure. The value of the current pixel is predicted from
one of its immediate neighboring pixel values. It is shown
[7] that, approximately, the number of bits it takes to code
a residue error have a log2 relationship with the magnitude
of that residue error. In each iteration, one of the
remaining unassigned symbols will be chosen to fill i n an
end position of the pool P. If Si is to be assigned, the total
bits needed to code those transition pixels between Si and
each of the already assigned symbols in the pool is in the
order of ∑j=0

N-1 log2 d(N,j) C(Si, Lj). If, instead, Si is not to
be assigned at this iteration, the total bits needed to code
those transition pixels between Si and each of the already
assigned symbols will i ncrease in general. Assuming Si

will be assigned in the next iteration, then the extra amount
of bits needed ∆Bi is
 ∆Bi = ∑j=0

N-1 log2 (d(N,j) +1) C(Si, Lj) –
 ∑j=0

N-1 log2 d(N,j) C(Si, Lj)
 = ∑j=0

N-1 log2 (1+1/ d(N,j)) C(Si, Lj)
 ≈ 1/ln2 ∑j=0

N-1 1/ d(N,j) C(Si, Lj) when d(N,j) >>1.
Therefore, with the weight w(N, j) chosen to be log2

(1+1/ d(N,j)), Step 3 in the re-indexing procedure tends to
assign the symbol that will result in the largest saving of
coding bits to the end position. This is a one-step look-
ahead optimization process. This also suggests that it is
reasonable to impose the constraint that a new symbol will
only be allocated to the end positions of the pool.

It is possible to implement the proposed re-indexing
scheme using O(M2) operations. Typically, it takes a
fraction of second to a few seconds, depending on M. For
example, for the 218x74 “af29” image with M=71, it takes
about 250 ms on a Sun Ultra 2 workstation.

3. EXPERIMENTAL RESULTS

We first tested on a set of icon-like graphics images with
sizes ranging from 218x74 to 550x550. These images have
only a limited number of colors. Each image is first
palettized, resulting in a color palette table and an index
image. The initial indices are generated using a luminance-
intensity-based approach [4]. Specifically, the indices 0,
…, M-1 will be assigned to the colors in the descending
order of their luminance intensity. This is a reasonably
good indexing scheme. It assigns close index values to
colors with close luminance intensity values.

The re-indexing scheme is then applied to the initial
index images. The output index images are then subject to

lossless compression by JPEG-2000 [6] and JPEG-LS [7].
These two cases will be referred to as palette-based JPEG-
2000 and palette-based JPEG-LS, respectively.

Fig. 2 shows the original “Party8” image (luminance
only), the intensity-based index image, and the re-indexed
index image. The displayed index images have been
subject to Gamma correction with the same gamma factor
of 6 for display purpose. The re-indexed index image
appears to be much smoother than the initial intensity-
based index image. This is expected to greatly facilit ate
the subsequent lossless coding.

Table 1 shows the experimental results. For palette-
based JPEG-2000, wavelet transform usually hurts the
compression eff iciency. All the results reported here for
palette-based JPEG-2000, except for “af29” and “bod7” ,
are obtained without wavelet transform, i.e., the entropy
coder is directly applied to the spatial index image. For
“af29” and “bod7” , the results presented in Table 1 are
obtained using a 2-level wavelet transform with the li fting
filter 9 (the Haar filter) which performs best among the set
of li fting filters provided in JPEG-2000 VM software [6].
For these two cases, wavelet transform helps to further
reduce the file size by about 4-5%. The index values are
down-shifted by their center value 2D-1, where D is the bit
depth of the index values, for more eff icient bit-plane
entropy coding. The file size includes the size of the
uncompressed color table. It is observed that, for palette-
based JPEG-2000 and palette-based JPEG-LS, the
proposed re-indexing scheme, on the average, reduces the
bit rate by 23.3% and 20.5% respectively, when compared
to the intensity-based indexing scheme. With the proposed
re-indexing scheme, palette-based approaches also
outperform GIF by a bit rate saving of up to 60%.

Table 1 also shows the results for two 2048x2560
natural color images “woman” and “bike” (palettized using
256 colors). Similar improvements are observed.

4. REFERENCES

[1] “FCD 14495, Lossless and near-lossless coding of
continuous tone still i mages (JPEG-LS),” ISO/IEC
JTC1/SC29 WG1 (JPEG/JBIG), July 1997.

[2] “ Information Technology – JPEG 2000 Image Coding
System,” ISO/IEC FCD15444-1: 2000 (V1.0, Mar. 2000).

[3] W. Zeng and S. Lei, “Option of JPEG2000 for coding
palettized images - a proposal,” JTC1/SC29/WG1 N1453,
Maui, Hawaii , Dec. 1999.

[4] A. Zaccarin and B. Liu, “A novel approach for coding color
quantized images, “ IEEE Tran. Image Proc., vol. 2, no. 4,
pp. 442-453, 1993.

[5] N. Memon and A. Venkateswaran, “On ordering color maps
for lossless predictive coding,” IEEE Tran. Image Proc., vol.
5, no. 11, pp. 1522-1527, Nov. 1996.

[6] "JPEG 2000 Verification Model 7.0 Software”, ISO/IEC
JTC1/SC29/WG1 N1685, April 2000.

[7] M. Weinberger, G. Seroussi and G. Sapiro, “LOCO-I: A low
complexity, context-based, lossless image compression
algorithm,” Proc. IEEE Data Compression Conference,
March, 1996.

Fig. 1: The general architecture of the proposed re-indexing compression system

Losslessly compressed bitstream size (bytes)
Palette-based JPEG-LS Palette-based JPEG 2000Graphics

images
of

colors Intensity-
based

Re-
indexing

 Saved
bits(%)

Intensity-
based

Re-
indexing

Saved
bits(%)

GIF

Af29 71 5554 4566 17.8 6540 5476 16.3 5600
Andrene 8 2318 1580 31.8 2306 1462 36.6 2034

Bod7 46 5102 4545 10.9 6435 5369 16.6 5642
Party8 12 7274 5983 17.8 8273 7423 10.3 17650
Pizza 7 11163 8294 25.7 9073 5915 34.8 10142
Rob 5 3332 2435 26.9 2721 2571 5.5 3595
Sam 8 1841 1613 12.4 2090 1192 43.0 2071

Woman 256 3527774 3544633 -0.5 3352470 2988274 10.9 3692257
Bike 256 3574296 3288853 8.0 3515853 2980061 15.2 3367021

Table 1: Comparisons between different indexing schemes and lossless compression schemes.

Fig. 2: Original image (Top) and index images of “Party8” (BottomLeft: intensity-based; BottomRight: proposed scheme).

Decoder

Encoder

Decompression Reconstruction

 Index image I’Compressed
bitstream

Displayed
image

Color table T’

Palettization Re-indexing

Original
image

Index image I Compressed
 bitstream

 Index image I’
Lossless

Compression

Color table T Color table T’

