
Beyond Programmable Shading: In Action

Current Generation Parallelism
In Games

Jon Olick
id Software

Presenter
Presentation Notes
First, I’d like to talk a bit about the history of parallelism. Then take a segue into what games are currently doing with parallelism on the Cell Processor, and end with some plans for the next generation.

Beyond Programmable Shading: In Action

Brief History of Parallelism

• 1 Processor
– The good old days.
– Why parallelize? Just wait a little and your programs

will get faster.

Presenter
Presentation Notes
The good old days where computers doubled in performance every 18 months stopped in about 2003 or 2004. So before then, why parallelize? Just wait until the next faster sequential processor to come out. Unfortunately this is no longer the case. Had this trend continued, you would have computers at least 4 times faster than there are today.

Beyond Programmable Shading: In Action

Brief History of Parallelism

• 2 to 3 Processors
– Logical splitting of game process into pipelined

pieces.
• Game
• Rendering
• Sound
• Loading/Decompression

Presenter
Presentation Notes
So now parallelism is the way to make your programs run faster. The first step is a logical splitting of the game into pipelined pieces, starting with a game and rendering thread. And then sound and in some cases loading and decompression.

Beyond Programmable Shading: In Action

Brief History of Parallelism

• About 6 to 8 Processors
– The transition to a job scheduling type architecture
– 1st order parallelism

• Game
• Rendering
• Sound
• Physics
• Collision
• Loading/Decompression
• Etc…

Presenter
Presentation Notes
The pipelining continues for the most part until about 6 processors or so. The 4 or 5 processor range is kind of like a no-mans land of parallelism. The overhead of doing job based parallelism doesn’t really outweigh the cost in most cases. At 6 processors though, the transition to a more data parallel approach really takes root. I like to call this 1st order parallelism.

Beyond Programmable Shading: In Action

Brief History of Parallelism

• About 8 to 16 Processors
– End of CPU history.
– Enter 1998 in GPU history.

• Approx # of processors as average parallel scalar
operations.

– 2nd order parallelism
– Jobs which create and manage the resources of

other jobs.
• GPU Command Processor (DMA engine)

Presenter
Presentation Notes
At 8 to 16 processors we have reached the end of CPU history, but we can enter the year 1998 of GPU history and approximate the number of equivalent CPU processors by the average number of parallel scalar operations. At this point a transition to 2nd order parallelism takes place. Which means spawning a job which creates and manages other jobs. In a GPU, the manager job is the command processor which spawns pixel jobs.

Beyond Programmable Shading: In Action

Brief History of Parallelism

• About 16+ processors
– 3rd order parallelism
– GPU Vertex Processors
– Jobs which create and manage the resources of

other jobs which create and manage the resources of
other jobs

Presenter
Presentation Notes
At 16 or more processors we enter the realm of current day GPUs and 3rd order parallelism. GPUs entered this realm when they added vertex transformation to their processing pipeline. For example, a GPU has a command buffer which spawns off vertex jobs which spawns off pixel jobs.

Beyond Programmable Shading: In Action

Brief History of Parallelism

0

50

100

150

200

250

300

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

NVidia

Nvidia

Riva 128 Riva TNT GeForce 256

Ap
pr

ox
 #

 o
f

CP
U

s

Presenter
Presentation Notes
Here is a chart showing the order of parallelism of GPUs with respect to the approximate number of equivalent CPU processors. As you can see GPUs quickly reached 3 orders of parallelism which is the most a GPU would need for typical rasterization. CPUs may follow a similar path with regards to orders of parallelism, but probably to different ends and with a more generic spin on it. This outcome may be likely if the CPU would be used to do graphics or graphics related tasks.

Beyond Programmable Shading: In Action

Current State of Parallelism

• Desktop Processors
– Intel Core 2 Quad, 4 processors, 3.2 ghz, 102 Gflops

• Soon to be 8 core?

• Multimedia Processors
– Cell Processor - 8 processors - 3.2 ghz - 192.0 Gflops

• 1 main, 7 co-processors

• Graphics Accelerators
– GTX 280 - 1.296 ghz – 0.933 Tflops

• 240 stream processors

Presenter
Presentation Notes
So this is the current state of parallelism. We have desktop processors at 4 cores which are easy to program and easy to debug. We have multimedia processors which are hard to program and hard to debug, but you get roughly twice the processing power there to take advantage of. And at the other end of the spectrum, we have graphics accelerators. Which are easy to program and decent to debug, but have fixed function restrictions that limit its usefulness.

Beyond Programmable Shading: In Action

CELL BROADBAND ENGINE™

Beyond Programmable Shading: In Action

PLAYSTATION®3 Processor Overview

• Game
• Animation
• Geometry Processing
• Post Processing
• Occlusion Rasterization
• Sorting
• Collision Detection
• Fourier Transform
• (De)Compression
• Not going to cover all of these…

Presenter
Presentation Notes
This is a list of all of the various different things people are doing with the Cell. They can be divided into two main groups.

Beyond Programmable Shading: In Action

PLAYSTATION®3 Processor Overview

• Parallelize ordinarily sequential CPU
processing

• Assist in what is typically considered GPU
processing

Presenter
Presentation Notes
Jobs that parallelize ordinarily sequential tasks and jobs that assist the GPU in its processing.

Beyond Programmable Shading: In Action

Primary Programming Challenges

• Fitting code and data in the 256k local co-
processor memory
– Best solutions are ones that don't treat the 256k

local store as a typical on demand caching
architecture
• Scattered reads/writes bad, sequential reads/writes

good

• Software Pipelining
• Only 16 byte aligned reads/writes
• Synchronization

Presenter
Presentation Notes
The primary programming challenged on the cell processor is first breaking up your workloads so that they fit in the 256k SPU local store. This is instead of treating the local store as an on demand cache. The primary programming challenges when writing code for the Cell Processor are first and foremost Second, due to the high latency of instructions, software pipelining can play a big role in the performance of a low level kernel. Third, any reads or writes to the local store must be aligned and be a multiple of 16 bytes. Last but certainly not least, synchronization between the various processors of the system.

Beyond Programmable Shading: In Action

MD6 ANIMATION PROCESSING

Presenter
Presentation Notes
First, highlighting some sequential work, is animation processing.

Beyond Programmable Shading: In Action

Game
Logic

MD6 Animation Processing

Presenter
Presentation Notes
In a typical game you have your game logic.

Beyond Programmable Shading: In Action

Blending Tree
Generation

Game
Logic

MD6 Animation Processing

Presenter
Presentation Notes
Which creates animation blending trees.

Beyond Programmable Shading: In Action

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

MD6 Animation Processing

Presenter
Presentation Notes
And from those trees come a blending operation list

Beyond Programmable Shading: In Action

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

MD6 Animation Processing

Presenter
Presentation Notes
And from that list comes the actual processing of the data.

Beyond Programmable Shading: In Action

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

Serial

Parallel

MD6 Animation Processing

Presenter
Presentation Notes
So what we are doing here at id is making everything but the game logic work in parallel. To do this we have

Beyond Programmable Shading: In Action

MD6 Animation Webs

• Separates Thinking from Representation
– Game Object says what it wants to look like.
– Animation Webs take care of the rest.

• Unstructured graph
– Each node has a blend tree

• Designed with simplicity in mind
– Animators should animate, not fiddle with nodes.
– Extract as much information as possible directly

from the animation data.

Presenter
Presentation Notes
Animation webs generate the blend trees and separate the thinking from the representation of the AI . It is a unstructured graph where each node in the graph has a blending equation. Traversing the graph is the same as transitioning from one animation to another.

Beyond Programmable Shading: In Action

• Additive Blending
• Subtractive Blending
• Animation Algebra

– Blend Equations
• Animation blending trees in the form of an equation.
• Example equation:

– (animA + animB) – animC

MD6 Animation Processing

Presenter
Presentation Notes
Animation blending which creates an algebra of operations in the form of an equation So they are easy to work with.

Beyond Programmable Shading: In Action

Partial Animation Blending

• Generalized play an animation only on the
face, torso, etc…

• One weight per joint per animation
• Compute alpha for slerp via following

equation:
– For each joint

• Let w0 = weight of joint in animation A
• Let w1 = weight of joint in animation B
• If(w1 > w0)

– Let alpha = (alpha * w1) / w0

• Else
– Let alpha = ((w1 – w0) + alpha * w0) / w1

Presenter
Presentation Notes
There is also support for partial animation blending where you have a weight per joint in each animation. For example, this is useful for blending between two animations on the torso and legs.

Beyond Programmable Shading: In Action

Varying parameter treatment

Presenter
Presentation Notes
To generate the data we sample the joints at regular intervals.

Beyond Programmable Shading: In Action

Varying parameter treatment

Presenter
Presentation Notes
We then remove any samples which interpolation can approximate.

Beyond Programmable Shading: In Action

Varying parameter treatment

16k 16k 16k

Presenter
Presentation Notes
And finally split up this information into pieces small enough to fit on the local store of an SPU.

Beyond Programmable Shading: In Action

GEOMETRY PROCESSING

Presenter
Presentation Notes
To assist the GPU we have a geometry processing system which has a runtime and a tools component...

Beyond Programmable Shading: In Action

Two modes of usage

• Primary mode
– Use offline tools
– Partition into vertex sets
– Use indexed triangles
– All features of pipeline can be used

SPU

Presenter
Presentation Notes
There are two different ways to use the system. The first way is to integrate the offline tools into your pipeline. This splits the game’s geometry into small chunks, called “vertex sets”. The size of a vertex set is small enough to fit on an SPU – typically between 500 to 1500 vertexes. The geometry tools output indexed triangles, because they have the highest RSX performance. The vertex sets which pass through the tools support all features across the board. <slide> The geometry pipeline processes these vertex sets as discrete entities, using one or more SPUs.

Beyond Programmable Shading: In Action

Two modes of usage (cont)

• Secondary mode
– Data generated by other tools
– Formats other than indexed triangles
– Non-partitioned objects
– Subset of pipeline features can be used

SPU

Presenter
Presentation Notes
The second way is to use meshes that are not prepared with offline tools. <slide>If the data is too large to fit on an SPU, we use a streaming like technique. With this, the pipeline reads the mesh’s data in SPU sized pieces, processes the data, and then reassembles those pieces on output. With streaming, all the vertex operations of the geometry pipeline, such as skinning and blend shapes can be performed, but the triangle operations such as triangle culling cannot. Nevertheless, this method is very useful, as it allows you to get the geometry system working first, and integrate the tools later.

Beyond Programmable Shading: In Action

SPU Geometry Pipeline Stages

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
Here are the stages of the geometry processing pipeline.

Beyond Programmable Shading: In Action

Vertex Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
The first stage is decompression of vertexes.

Beyond Programmable Shading: In Action

Vertex Attributes

Unique Vertex
Array 0

Instance Vertex
Array 1

Presenter
Presentation Notes
This takes in one or two vertex arrays in a variety of formats, each potentially interleaving data of a few different types,

Beyond Programmable Shading: In Action

Vertex Decompression

Float TablesUnique Vertex
Array 0

Instance Vertex
Array 1

Presenter
Presentation Notes
and then converts them into separate tables of floating point values. The processing pipeline supports all native RSX formats as well as some compressed formats.

Beyond Programmable Shading: In Action

24bit Unit Vector

• Smallest 2 compression
– Two smallest components with 10 bits each

• Encoded from –sqrt(2)/2 to +sqrt(2)/2
– Largest component reconstructed via

• Largest = sqrt(1 – smallestA2 – smallestB2)
• One additional bit for sign of largest component.

Presenter
Presentation Notes
For normals and tangents, there is a 24 bit unit vector format that increases the precision per component

Beyond Programmable Shading: In Action

24bit Unit Vector

• Smallest 2 compression
– Two smallest components with 10 bits each

• Encoded from –sqrt(2)/2 to +sqrt(2)/2
– Largest component reconstructed via

• Largest = sqrt(1 – smallestA2 – smallestB2)
• One additional bit for sign of largest component.

• One more bit to represent W as +1 or -1
– For constructing bi-normal from normal and tangent.

Presenter
Presentation Notes
And also supports a handedness bit for defining the tangent frame.

Beyond Programmable Shading: In Action

N-bit Fixed Point with integer offsets

• Simple n.x fixed point values
– Per-segment integer offset

• Bit count may vary from attribute to attribute

Presenter
Presentation Notes
For positions and texture coordinates, there is a fixed point format with an integer offset, where the bit count can vary from attribute to attribute. These techniques usually remove about a quarter of the vertex data.

Beyond Programmable Shading: In Action

Index Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
The second stage of the pipeline decompresses index tables. As I mentioned earlier, the pipeline supports indexed triangles as the primary format, because indexed triangles have a higher performance than the other triangle formats such as triangle strips.

Beyond Programmable Shading: In Action

Index Table Construction

• Index table is created by a vertex cache
optimizer
– Based on K-cache algorithm

• Number of vertex program outputs affects
Vertex Cache size.

• Four vertex mini cache most important
optimization factor

Presenter
Presentation Notes
But, when using indexed triangles, the order of indexes has a significant impact on performance. The assignment of indexes to vertexes and the ordering of triangles in a model typically happen with a tools-side vertex cache optimizer. There is a four vertex mini-cache that the RSX uses in primitive assembly – this four vertex LRU is usually the most important factor to consider when optimizing index data.

Beyond Programmable Shading: In Action

Index Cache Optimizer

• Our vertex cache optimizer produces very
regular index data

0 1 2

0 2 3

3 2 4

3 4 5

6 7 8

9 6 8

10 9 11

9 8 11

Presenter
Presentation Notes
The index cache optimizer we use produces very regular index data.

Beyond Programmable Shading: In Action

Index Decompression

• Our vertex cache optimizer produces very
regular index data

0 1 2
0 2 3
3 2 4
3 4 5
6 7 8
9 6 8

10 9 11
9 8 11

Presenter
Presentation Notes
the resulting triangles are typically only simple combinations of the previous triangle and a single new vertex.

Beyond Programmable Shading: In Action

Index Decompression

0

1

2

Triangle Indexes

0 21

Presenter
Presentation Notes
Also, indexes can be rotated within a triangle without affecting its appearance. Effectively, these are all the same triangle.

Beyond Programmable Shading: In Action

Index Decompression

2

0

1

Triangle Indexes

2 10

Beyond Programmable Shading: In Action

Index Decompression

• Before Rotation

0 1 2
0 2 3
3 2 4
3 4 5
6 7 8
9 6 8

10 9 11
9 8 11

Presenter
Presentation Notes
Here is the same index buffer as before,

Beyond Programmable Shading: In Action

Index Decompression

0 1 2
0 2 3
3 2 4
3 4 5
6 7 8
6 8 9

9 11 10
11 9 8

• After Rotation

Presenter
Presentation Notes
And after rotating the triangles to common patterns.

Beyond Programmable Shading: In Action

Index Decompression

Presenter
Presentation Notes
There are very few resulting patterns, so the compression ratios can be quite high.

Beyond Programmable Shading: In Action

Index Decompression

85% compression
6.5 : 1

Presenter
Presentation Notes
We’re typically removing about 85% of the index data in this fashion.

Beyond Programmable Shading: In Action

Blend Shapes

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
The pipeline also supports blend shapes, which is to say, additive vertex blending. Arbitrary numbers of blend shapes can be combined to form a character, and since quite often most vertexes in a blend shape match those of the base mesh, vertex data compression ratios can be very good.

Beyond Programmable Shading: In Action

Blend Shapes in MLB® 08 The Show

Presenter
Presentation Notes
Here is an example of blend shape use for cloth simulation in MLB 08, The Show.

Beyond Programmable Shading: In Action

Skinning

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
Next in the pipeline is four bone skinning, I believe many teams are currently performing skinning on the SPUs rather than the RSX, and there are two large benefits of doing this. First, you pull

Beyond Programmable Shading: In Action

Skinning on SPUs

void SkinVs(float4 inPosition : ATTR0, float4 weights : ATTR3,

float4 matrixIndex : ATTR4,

out float4 position : POSITION,

uniform float4 joints[72], uniform float4x4 modelViewProj)

{

position = 0;

for (int i = 0; i < 4; i++)

{

float idx = matrixIndex[i];

float3x4 joint = float3x4(joints[idx+0], joints[idx+1],
joints[idx+2]);

position += weights[i] * mul(joint, inPosition);

}

position = mul(modelViewProj, position);

}

Presenter
Presentation Notes
this much code from your vertex program. Also, you can save any time that the RSX takes to read in the skinning weights and indexes.

Beyond Programmable Shading: In Action

Skinning on SPUs

30% Performance Improvement

Presenter
Presentation Notes
Shifting this work to the SPUs typically results in about a 30% speed boost on the RSX, but in situations where the graphical processing is simpler, such as shadow map generation, we’ve seen performance gains

Beyond Programmable Shading: In Action

Skinning on SPUs

30% Performance Improvement

Shadow map generation.... 70%!

Presenter
Presentation Notes
as high as 70%.

Beyond Programmable Shading: In Action

Discrete Progressive Mesh

• Smoothly reduces the
triangle count as a model
moves into the distance

• With discrete progressive
mesh, the LOD calculation is
done once for an entire
object

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
The SPU geometry processing pipeline contains two progressive mesh algorithms, both of which use smooth transformations to reduce the triangle count of an object as it moves into the distance. We chose this kind of smooth progressive mesh algorithm so the LOD transitions can occur up close to the camera. The first of these is discrete progressive mesh. It is called “discrete” because it is used on discrete objects, such as characters or standalone objects within a scene. These discrete objects morph smoothly, as an entire object, from one LOD to the next. Here is a short description of the algorithm.

Beyond Programmable Shading: In Action

At an LOD there are two types of
vertexes

LOD = 0.0

Parent Vertex

Child Vertex

Presenter
Presentation Notes
First, every LOD of a vertex set contains two types of vertexes – parent vertexes and child vertexes. Within a LOD, parent vertexes don’t move.

Beyond Programmable Shading: In Action

As the LOD level decreases, the
children “slide” towards their parents

LOD = 0.2

Parent Vertex

Child Vertex

Presenter
Presentation Notes
However, as the LOD starts to decrease, the child vertexes start to “slide” towards their parents.

Beyond Programmable Shading: In Action

The children continue to move towards
their parents

LOD = 0.7

Parent Vertex

Child Vertex

Presenter
Presentation Notes
And as the LOD continues to decrease, the children move even closer to their parents until finally

Beyond Programmable Shading: In Action

At the next integral LOD, all child
vertexes disappear as do the triangles

LOD = 1.0

Parent Vertex

Child Vertex

Presenter
Presentation Notes
the next integral LOD is reached where the child vertexes and triangles are removed.

Beyond Programmable Shading: In Action

Continuous Progressive Mesh

• Like discrete progressive
mesh, child vertexes move
smoothly toward their
parents

• However, the LOD is
calculated for each vertex
instead of just once for the
object

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
Continuous progressive mesh is useful for ground terrain or any object that covers a large distance. Like the discrete version, it reduces triangle counts smoothly through progressive approximation. <slide>However, with continuous progressive mesh, the object can span many different lod levels at the same time. So we must calculate the LOD level per vertex.

Beyond Programmable Shading: In Action

Vertex set about to undergo continuous
progressive mesh

Parent Vertex

Child Vertex, LOD 1

Child Vertex, LOD 0

Presenter
Presentation Notes
Here is the same mesh from the previous example, but this time it is going to undergo continuous progressive mesh.

Beyond Programmable Shading: In Action

A single vertex set can straddle several
LOD ranges

LOD = 1.0

Parent Vertex

Child Vertex, LOD 1

Child Vertex, LOD 0

LOD = 0.0

Presenter
Presentation Notes
As you can see, an object can straddle many LOD ranges at once, with some vertexes in LOD 0, some in LOD 1, and even some in LOD 2. But this time,

Beyond Programmable Shading: In Action

Vertexes move depending on their
distance

Parent Vertex

Child Vertex, LOD 1

Child Vertex, LOD 0

LOD = 1.0

LOD = 0.0

Presenter
Presentation Notes
each vertex moves based its own individual distance from the camera.

Beyond Programmable Shading: In Action

Triangle Culling

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
The pipeline also supports triangle culling.

Beyond Programmable Shading: In Action

Up to 70% of triangles do not contribute to
final image.

Presenter
Presentation Notes
60 to 70 percent of triangles typically don’t result in any renderable area.

Beyond Programmable Shading: In Action

Off Screen Triangles

Presenter
Presentation Notes
Some are offscreen,

Beyond Programmable Shading: In Action

Back Facing Triangles

Presenter
Presentation Notes
some don’t face the camera,

Beyond Programmable Shading: In Action

Zero Area Triangles

Presenter
Presentation Notes
some are degenerate,

Beyond Programmable Shading: In Action

Zero Area Triangles

Presenter
Presentation Notes
And if we zoom in on this box here…

Beyond Programmable Shading: In Action

No Pixel Triangles

Presenter
Presentation Notes
We will find triangles which don't hit a pixel center.

Beyond Programmable Shading: In Action

Triangle Culling

Presenter
Presentation Notes
The triangle cull stage of the SPU pipeline checks each triangle and produces a new index table, containing only those triangles that pass these tests.

Beyond Programmable Shading: In Action

Multisampling adds some complications…

Presenter
Presentation Notes
Multisampling adds some complications,

Beyond Programmable Shading: In Action

Culled

Presenter
Presentation Notes
but even then it is possible to do a good job of the pixel center test.

Beyond Programmable Shading: In Action

Triangle Culling

10% to 20%
Performance Improvement

Presenter
Presentation Notes
Overall, the performance improvements in a balanced scene are about 10 to 20 percent --

Beyond Programmable Shading: In Action

Compression for Output

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
The next stage of the pipeline prepares the data that the RSX will use.

Beyond Programmable Shading: In Action

Float Tables

Presenter
Presentation Notes
The geometry pipeline processes the attributes as independent tables of floats,

Beyond Programmable Shading: In Action

When done, the vertex attributes are
compressed into one output stream

Output
Vertex Array

Float Tables

Presenter
Presentation Notes
in this stage the attribute data is converted into RSX friendly formats and interleaved into one table for output.

Beyond Programmable Shading: In Action

Output Buffering Schemes

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Progressive Mesh

Presenter
Presentation Notes
The final stage in the pipeline is output and synchronization.

Beyond Programmable Shading: In Action

Double Buffer

• Each buffer stores vertex
and index data for an entire
frame

• SPUs atomically access a
mutex which is used to
allocate memory from a
buffer

• Uses lots of memory

Vertex
and
Index
Data
for
Frame 0

Vertex
and
Index
Data
for
Frame 1

Presenter
Presentation Notes
The simplest output buffering scheme is double buffering. In this scheme there are two large buffers, and each buffer stores all of the vertex and index data for an entire frame. <slide>An SPU allocates some space by atomically accessing and updating a mutex. This inter SPU synchronization is fine for 8 processors, but breaks down when you have more than that. <slide> It also uses a lot of memory.

Beyond Programmable Shading: In Action

It is possible to completely fill a buffer

SPUData

Vertex
and
Index
Data

Presenter
Presentation Notes
A problem with outputting a variable amount of data into a fixed size buffer is that you can run out of space. But that’s not all,

Beyond Programmable Shading: In Action

Double buffering adds a frame of lag

Build Jobs
on PPU

Process Jobs
on SPU

Render on
RSX™ Scan Out

Build Jobs
on PPU

Process Jobs
on SPU

Render on
RSX™ Scan Out

Build Jobs
on PPU

Process Jobs
on SPU

Render on
RSX™ Scan Out

Build Jobs
on PPU

Render on
RSX™ Scan Out

Build Jobs
on PPU

Render on
RSX™ Scan Out

Build Jobs
on PPU

Render on
RSX™ Scan Out

Standard Pipeline

Pipeline with Double Buffered SPU Processing

Presenter
Presentation Notes
it also adds a frame of lag to your rendering pipeline making user input less responsive. So lets start fixing some of these draw backs.

Beyond Programmable Shading: In Action

Single Buffering

• Uses only half the memory!
• Still possible to completely

fill the buffer
Vertex
and
Index
Data
for
Single
Frame

Presenter
Presentation Notes
Switching to a single buffering scheme solves the frame lag problem <slide>and uses half the memory, <slide>but we can still run out of it.

Beyond Programmable Shading: In Action

Single Buffering has a shorter pipeline

• Vertex and index data is created just-in-time
for the RSX™

• Draw commands are inserted into the
command buffer while the RSX™ is rendering

• Requires tight SPU↔RSX™ synchronization

Build Jobs on
PPU

SPU Processing/
RSX™ Rendering Scan Out

Build Jobs on
PPU

SPU Processing/
RSX™ Rendering Scan Out

Build Jobs on
PPU

SPU Processing/
RSX™ Rendering Scan Out

Presenter
Presentation Notes
It also now requires tight synchronization with the RSX

Beyond Programmable Shading: In Action

SPU↔RSX™ Synchronization
Using Local Stalls

Command
Buffer

Draw 17

Local Stall

Other

Local Stall

Local Stall

Local Stall

Local Stall

Local Stall

 Place local stalls in the command buffer
where necessary

 RSX™ will stop processing at a local stall
until it is overwritten by new commands

 SPUs will generally stay ahead of the
RSX™, so stalls rarely occur

Local Stall

Presenter
Presentation Notes
This is solved by placing local stalls in the RSX command buffer which stop the RSX

Beyond Programmable Shading: In Action

SPU will overwrite local stalls when it
outputs a set of new commands

SPU

Command
Buffer

Draw 17

Put
Pointer

Local Stall

Other

Local Stall

Local Stall

Local Stall

Local Stall

Local Stall

Local Stall
New
Commands

Presenter
Presentation Notes
until the local stall is overwritten by the SPU. So the next problem to solve is running out of memory

Beyond Programmable Shading: In Action

Ring Buffers

• Small memory footprint
• Will not run out of memory

Vertex
and
Index

Data

End of
Free Area

Start of
Free Area

Presenter
Presentation Notes
Using a ring buffer will give us a small memory footprint and we can never run out of memory. However, this adds a complication where you have to balance the size of the ring buffer to avoid stalls, The RSX also has to report its progress back to the SPUs.

Beyond Programmable Shading: In Action

RSX™ writes a semaphore once a
chunk of data has been consumed

• A command to write a semaphore needs to be
added to the command buffer after all
commands that use the data
– The value of the semaphore to be written is the new

end of free area pointer

Data 19

Data 6

Data 14

Start of
Free Area

Draw 6

Draw 5

Draw 7

Semaphore

Semaphore

Semaphore

Current
RSX™
Execution

New End
of Free
Area

Presenter
Presentation Notes
Luckily the RSX has support for writing semaphores which we can use to report back the used memory pointer. Now lets get rid of that SPU synchronization so they don’t fight over the same ring buffer. The fastest synchronization is no synchronization.

Beyond Programmable Shading: In Action

Each SPU has its own buffer

Data 23

Data 17

Data 10

Data 22

Data 11

Data 16

Data 19

Data 6

Data 14 Data 20

Data 7

Data 15

Data 21

Data 12

Data 9
Data 18

Data 8

Data 13

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Buffer 0 Buffer 1

Buffer 3
Buffer 2

Buffer 4 Buffer 5

Presenter
Presentation Notes
So lets give each processor its own ring buffer.

Beyond Programmable Shading: In Action

Geometry Performance

Presenter
Presentation Notes
Performance of the geometry pipeline is quite good. Cycle counts vary, based on the particular features used, as well as the particular model being displayed, here are the cycle counts per triangle for one of our test cases.

Beyond Programmable Shading: In Action

Software Pipelined C with SPU Intrinsics

do

{

m1 = in1;

in1 = si_lqx(pIn1, offset);

m2 = in2;

in2 = si_lqx(pIn2, offset);

m3 = in3;

in3 = si_lqx(pIn3, offset);

temp2 = si_selb(m3, m1, mask_0X00);

si_stqx(out1, pOut1, offset);

temp3 = si_selb(m2, m1, mask_00X0);

si_stqx(out2, pOut2, offset);

temp1 = si_selb(m1, m2, mask_0X00);

si_stqx(out3, pOut3, offset);

offset = si_ai(offset, 0x30);

out2 = si_shufb(m2, temp2, qs_bCaD);

out1 = si_selb(temp1, m3, mask_00X0);

out3 = si_shufb(m3, temp3, qs_caBD);

} while(si_to_int(offset) != 0);

Presenter
Presentation Notes
We wrote the individual routines using SPU intrinsics. At first party, intrinsics tend to be more popular than hand scheduled assembly for a variety of reasons. They are easier to modify and maintain, and performance with intrinsics is quite good,

Beyond Programmable Shading: In Action

Software Pipelined C with SPU Intrinsics

Up to 20x faster

than naive C/C++

do

{

m1 = in1;

in1 = si_lqx(pIn1, offset);

m2 = in2;

in2 = si_lqx(pIn2, offset);

m3 = in3;

in3 = si_lqx(pIn3, offset);

temp2 = si_selb(m3, m1, mask_0X00);

si_stqx(out1, pOut1, offset);

temp3 = si_selb(m2, m1, mask_00X0);

si_stqx(out2, pOut2, offset);

temp1 = si_selb(m1, m2, mask_0X00);

si_stqx(out3, pOut3, offset);

offset = si_ai(offset, 0x30);

out2 = si_shufb(m2, temp2, qs_bCaD);

out1 = si_selb(temp1, m3, mask_00X0);

out3 = si_shufb(m3, temp3, qs_caBD);

} while(si_to_int(offset) != 0);

Presenter
Presentation Notes
Loops tend to be about 20x faster than the naive C code from which they are derived.

Beyond Programmable Shading: In Action

1 SPU

Presenter
Presentation Notes
In general, with a single SPU

Beyond Programmable Shading: In Action

1 SPU

800,000+
Triangles Per Frame

at 60 Frames per Second

Presenter
Presentation Notes
you can process more than three quarters of a million triangles per frame at sixty frames per second –

Beyond Programmable Shading: In Action

1 SPU

800,000+
Triangles Per Frame

at 60 Frames per Second

60% of which are culled!

Presenter
Presentation Notes
while hopefully culling well over 60% of them.

Beyond Programmable Shading: In Action

Next Generation Parallelism
In Games

Jon Olick
id Software

Beyond Programmable Shading: In Action

GAME ENTITY PROCESSING

Presenter
Presentation Notes
Entity Processing is by far the most sequential part of the game code.

Beyond Programmable Shading: In Action

Game Entity Processing

• Current Generation
– Serial Processing of entities in a giant for loop.

for(int i = 0; i < numEntities; ++i) {
entity[i]->Think();

}

Presenter
Presentation Notes
Typical code involves processing each entity one at a time. A next generation engine however should plan for parallelism.

Beyond Programmable Shading: In Action

Game Entity Processing

• Current Generation
– Serial Processing of entities in a giant for loop.

• Next Generation
– Parallelism via Double Buffering
– Every entity runs in parallel with each other with no

dependency stalls.
– Each entity can only read from previous frame’s

results
– Each entity can only write to itself

Presenter
Presentation Notes
Double buffering the game data can achieve peak performance by allowing each entity to run asynchronously. This does force certain rules on the processing however. Each entity can only read from the previous frame’s results. And each entity can only write to itself. This approach has certain unique benefits

Beyond Programmable Shading: In Action

Game Entity Processing

• Record the progress of the game and replay
to debug.

• Single thread and randomize processing of
entities to help find bugs.

• Can protect memory so that bad accesses
cause exceptions to enforce double
buffering rules.

Presenter
Presentation Notes
You can implicitly record the progress of the game, and replay any frame to debug it. To help find bugs, you can also switch back to a single big for loop and randomize the processing order. Protecting memory can also enforce the reading and writing rules with hardware exceptions.

Beyond Programmable Shading: In Action

Game Entity Processing

• What about entities which have dependant
entities?

• Bucketing and Synchronization Points

96

Presenter
Presentation Notes
In games, the ordering of processing of entities for a single frame sometimes actually matters. In these few cases, you can run them in a separate batch after all previous entities have been processed. This creates synchronization points in the processing of entities, which there hopefully there won’t be too many of.

Beyond Programmable Shading: In Action

RAY
CASTING

THE NEXT GENERATION

Presenter
Presentation Notes
So lets boldly go where no game company has gone before … But, first

Beyond Programmable Shading: In Action

Why Ray Casting?

Presenter
Presentation Notes
Why ray casting?

Beyond Programmable Shading: In Action

Why Ray Casting?

• A good question…

Presenter
Presentation Notes
That’s a good question.

Beyond Programmable Shading: In Action

Presenter
Presentation Notes
Back in Quake 1, if you had to make a decision between having an additional processor or having a GPU, which would you choose?

Beyond Programmable Shading: In Action

• Back in Quake 1
– If you had to make a decision between an additional

CPU and a Graphics Card which would you choose?

Presenter
Presentation Notes
And why is this any different today?

Beyond Programmable Shading: In Action

• Back in Quake 1
– If you had to make a decision between an additional

CPU and a Graphics Card which would you choose?
– Why is this any different today?

Presenter
Presentation Notes
So, that is a little misleading. Due to the fact that early rasterization hardware could process a pixel per cycle, a single additional CPU wouldn't match the improved performance of a GPU. So it really comes down to price. You get faster hardware that can do the same thing for less money. I do believe that this is still true today and for the foreseeable future. However, as hardware becomes more programmable, uses other than rasterization are possible. Although using the hardware for things other than rasterization will be slower, simply because the hardware is not designed for it, once a proof of concept is out there showing the value of ray casting, specific hardware that really accelerates it can then become a viable money making strategy. When that happens the hardware will be built with that in mind, perhaps by adding some assisting fixed function hardware. At this point though, ray casting technology is far too infant to determine any common patterns worthy of hardware abstraction. Its too risky.

Beyond Programmable Shading: In Action

• Back in Quake 1
– If you had to make a decision between an additional

CPU and a Graphics Card which would you choose?
– Why is this any different today?
– Its not any different.

Presenter
Presentation Notes
So the answer is of course, is that its not.

Beyond Programmable Shading: In Action

Why Ray Casting?

• What value does it provide to developers?

Presenter
Presentation Notes
What value does raycasting provide to game developers? As is evident in the last half of this presentation, much of the work in making games goes into optimizing for performance, fitting everything in memory, and most importantly content generation. But, what if you never had to worry about triangle counts, so that the model the artists create in Z-brush are the final models? What if you never had to worry about rendering performance because it was fairly even no matter how complex the view was. And what if you never had to worry about the memory footprint of your textures or geometry as it is streamed in from disk at the highest level of detail that you can perceive. While all these things are possible with rasterization, they are far easier with ray casting.

Beyond Programmable Shading: In Action

Why Ray Casting?

• What value does it provide to developers?
– Shorter & Cheaper Development
– Higher Quality Games

Presenter
Presentation Notes
So the answer is, shorter and cheaper development, with higher quality games.

Beyond Programmable Shading: In Action

Why Ray Casting?

• What value does it provide to end users?

Presenter
Presentation Notes
What value does it provide to end users? We are making a bet that it will provide good value. However, until it is realized there is still the risk that it won't pay off. I do believe though that it will pay off in spades. And here is why. What we have seen in Rage with unique texturing on every surface, and the improved quality level from that, we can also see a few areas of improvement.

Beyond Programmable Shading: In Action

Screenshot From E3 Rage Video

Presenter
Presentation Notes
As we can see from this screen shot, while it looks great.

Beyond Programmable Shading: In Action

Screenshot From E3 Rage Video

Presenter
Presentation Notes
If we take a closer look at the oblique surfaces we can clearly see that everything is flat. Even though the textures and normal maps say differently, it is clearly a flat surface. This is even more evident when in motion. With ray casting, we will be able to, like a pop-up book, make the apparent geometry become real geometry. So there is some real value that can be added here to practically every surface. The content production pipeline doesn't really even have to change very much either from a unique texturing pipeline. You continue to stamp detail on surfaces where the stamps are created from high poly models.�

Beyond Programmable Shading: In Action

Why Ray Casting?

Presenter
Presentation Notes
Just briefly, the speedup of a program using multiple processors in parallel computing is limited by the sequential fraction of the program. For example, if 95% of the program can be parallelized, Then the theoretical maximum speedup using parallel computing would be 20 times faster,no matter how many processors are used. So why is ray casting better for Amdahl's Law? Lets take a trip to the future of rasterization to show a possible course of how this will play out.

Beyond Programmable Shading: In Action

Current State of Rasterization

Vertex Processing

Triangle Setup

Fragment Processing

Command Buffer

Vertex
Processing

Fragment
Processing

Presenter
Presentation Notes
In this diagram triangle setup is by far the biggest sequential element of rasterization. And this problem is only going to get worse as games will use smaller and more triangles. If you remember from earlier, a lot of the performance benefit of the SPUs were gained in assisting this part of the GPU.

Beyond Programmable Shading: In Action

Future of Rasterization

Presenter
Presentation Notes
Lets take a look at how hardware vendors may overcome this.

Beyond Programmable Shading: In Action

Future of Rasterization

Presenter
Presentation Notes
If we subdivide the screen into multiple regions,

Beyond Programmable Shading: In Action

Future of Rasterization

Presenter
Presentation Notes
Then we can process those triangles in each region in parallel with each other. There are two diminishing returns problems with this. First

Beyond Programmable Shading: In Action

Future of Rasterization

Presenter
Presentation Notes
Any overlapping triangles will have to be setup twice, so as the screen gets split more finely.

Beyond Programmable Shading: In Action

Future of Rasterization

Beyond Programmable Shading: In Action

Future of Rasterization

Presenter
Presentation Notes
So does the re-setup of triangles also increase. However, I don’t think this is going to be a huge problem,

Beyond Programmable Shading: In Action

Future of Rasterization

Presenter
Presentation Notes
because the amount screen splitting will likely follow the reduction of size of triangles and not precede it by much. There are two primary ways that the hardware vendors could implement this without changing data formats.

Beyond Programmable Shading: In Action

Future of Rasterization

Vertex Processing

Triangle Setup

Fragment Processing

Command Buffer

Multiple Cores

Vertex Processing

Fragment Processing

Presenter
Presentation Notes
The first of which Is by duplicating the GPU into multiple cores. This has a problem however

Beyond Programmable Shading: In Action

Future of Rasterization

28 31 29 28 32 29 28 33 34 35 36 37 38 39 37 38 40 37 38 41

GPU Triangle Setup

Presenter
Presentation Notes
With sequential reads of the triangle index buffer Where the GPU reads one triangle at a time until all triangles are iterated

Beyond Programmable Shading: In Action

Future of Rasterization

Vertex Processing

Triangle Setup

Fragment Processing

Command Buffer

Vertex
Processing

Fragment
Processing

Triangle Sorting

Presenter
Presentation Notes
The second way is the addition of a triangle sorting stage. Which sorts the triangles into the parallel regions of the screen. You can parallelize the sorting itself by dividing the input triangle list into sections Where the number sections is equal to the number of available processors. This is a certainly valid technique And will serve the hardware vendors well for many years to come. However, the long term success of this algorithm depends on the core count keeping up with increases in render resolution and triangle count. There is no current indication, that this will ever happen. If it did, it would probably be due to hitting atomic limits in the fab process. Even then though, 3 dimensional lithography would demolish that barrier. So rasterization is here to stay for a very long time. In the short term however, Graphics cards are not easily capable of displaying the kind of triangle counts that can rival ray casting. So there is a third option here that can benefit both ray casting and rasterization.

Beyond Programmable Shading: In Action

Future of Rasterization x2

121

GPU Triangle Setup

0 1 2

0 2 3

3 2 4

3 4 5

6 7 8

9 6 8

10 9 11

9 8 11

9 8 12

13 14 15

15 14 16

16 14 17

16 14 18

16 14 19

Presenter
Presentation Notes
In this option, we are going to need random access to the triangle index data So that the total number of triangles is almost irrelevant to performance.

Beyond Programmable Shading: In Action

Future of Rasterization x2

122

GPU Triangle Setup

0 1 2

0 2 3

3 2 4

3 4 5

6 7 8

9 6 8

10 9 11

9 8 11

9 8 12

13 14 15

15 14 16

16 14 17

16 14 18

16 14 19

Beyond Programmable Shading: In Action

Future of Rasterization x2

123

GPU Triangle Setup

0 1 2

0 2 3

3 2 4

3 4 5

6 7 8

9 6 8

10 9 11

9 8 11

9 8 12

13 14 15

15 14 16

16 14 17

16 14 18

16 14 19

Beyond Programmable Shading: In Action

Future of Rasterization x2

124

GPU Triangle Setup

0 1 2

0 2 3

3 2 4

3 4 5

6 7 8

9 6 8

10 9 11

9 8 11

9 8 12

13 14 15

15 14 16

16 14 17

16 14 18

16 14 19

Beyond Programmable Shading: In Action

Future of Rasterization x2

125

GPU Triangle Setup

0 1 2

0 2 3

3 2 4

3 4 5

6 7 8

9 6 8

10 9 11

9 8 11

9 8 12

13 14 15

15 14 16

16 14 17

16 14 18

16 14 19

Presenter
Presentation Notes
How do we do this? One answer is a pre-processed Or dynamically updated spatial data structure which would convert the problem into a binary search. Where for each pixel the data structure would be intersected with a ray to gather the input for rendering that pixel. This process is very similar to ray-casting. What’s interesting is that if the control flow of this tree structure can be standardized and abstracted slightly, Then ray casting may be able to piggy back on this technology. So this may be an interesting win-win approach for the hardware vendors.

Beyond Programmable Shading: In Action

Why voxels, and not triangles?

Presenter
Presentation Notes
Why voxels? There is so much momentum with triangles, Why change? And Why now?

Beyond Programmable Shading: In Action

Why voxels, and not triangles?

• Unique Texturing is possible with
rasterization
– Rage – idTech 5

Presenter
Presentation Notes
Rage proves that unique texturing is possible with existing technology. I spoke about Progressive Mesh in the previous half of the talk.

Beyond Programmable Shading: In Action

Why voxels, and not triangles?

• Unique Texturing is possible with
rasterization
– Rage – idTech 5

• Unique Geometry is possible with
rasterization
– Progressive Mesh

Presenter
Presentation Notes
That seems like a decent solution to the unique geometry problem. So here is the dirty secret to progressive mesh. Its in the content generation. The triangle collapsing solution tries to be automatic and does a decent job at it, but it still requires an artists touch to tell which edges are important to keep. This can be a very time consuming iterative process. More man hours means more money.

Beyond Programmable Shading: In Action

Why voxels, and not triangles?

• Unique Texturing is possible with
rasterization
– Rage – idTech 5

• Unique Geometry is possible with
rasterization
– Progressive Mesh

• SVO Solves Two Problems in One
– Unique Texturing & Unique Geometry

Presenter
Presentation Notes
Whereas the voxel approach solves both problems at the same time, hopefully without requiring any hand massaging of the data. Which of course equates to real dollars and cents.

Beyond Programmable Shading: In Action

Why is the control flow efficient?

Presenter
Presentation Notes
Why is the control flow efficient? If we have a few rays here to trace against that sphere over there. We can see that as they traverse through the world they generally follow the same data up until the last few recursions. But,

Beyond Programmable Shading: In Action

Why is the control flow efficient?

Presenter
Presentation Notes
what if the camera was really far away so the ray end points were really far apart, the data accesses would become much more scattered in memory, wouldn't they?�

Beyond Programmable Shading: In Action

Why is the control flow efficient?

Presenter
Presentation Notes
If we stop traversing the structure when the size of a voxel is less than the size of a pixel, Then much of that data coherency is maintained and very little detail is lost.

Beyond Programmable Shading: In Action

Why is the control flow efficient?

Presenter
Presentation Notes
So through this there is a geometry mip mapping of sorts.

Beyond Programmable Shading: In Action

Voxel Mip Mapping – Thin Walls

Presenter
Presentation Notes
There are artifacts that occur though when you have two walls very close together of different colors.

Beyond Programmable Shading: In Action

Voxel Mip Mapping – Thin Walls

Beyond Programmable Shading: In Action

Voxel Mip Mapping – Thin Walls

Beyond Programmable Shading: In Action

Voxel Mip Mapping – Thin Walls

Presenter
Presentation Notes
You can have this incorrect bleed through effect which can be mitigated in various ways, for example by instead of using colors, using spherical harmonics for getting a color based on a viewing direction, but just saying "don't do that" to the artists should hopefully be sufficient. �

Beyond Programmable Shading: In Action

Caveats of Ray-Tracing?

• “Primary rays cache, secondary rays thrash”™
– Importance sampling to the rescue!

• Ray Tracing != Ray Casting

Presenter
Presentation Notes
Although primary rays have this really nice access pattern, secondary and tertiary rays don't always have coherent patterns. Luckily importance sampling comes in to help here. However, for the next generation renderer baking in most of the secondary information is probably preferable.

Beyond Programmable Shading: In Action

Sparse Voxel Oct-trees

• Oct-trees as collection of maximal blocks.
– Related to run-length encoding.
– Variable splitting planes

Presenter
Presentation Notes
The sparse voxel oct-tree is the data structure of choice. Oct-trees are a form of compression related to run-length encoding. Variable splitting planes are useful for optimizations as well as for patching bleed through artifacts.

Beyond Programmable Shading: In Action

Data Structure

• Disk Caching with Virtual and Physical Pages

Presenter
Presentation Notes
These oct-trees are going to be very large, on the order of tens of gigs at least. So a paging system is necessary to fit it in memory, even for next generation consoles. But, before I talk about how to do this, lets ask the question, “Is disk caching a valid lever that we can push on?”

Beyond Programmable Shading: In Action

Is Disk Caching a Valid Lever?

141

Presenter
Presentation Notes
As can be seen from this graph, the size of a hard drive increases by an order of magnitude every 5 years or so and by the time the next generation of consoles is out, hard drives will routinely be multiple tera bytes in size. Consoles generally lag behind this curve a bit, but a 500 gigabyte hard drive for a next generation console is not out of the question.

Beyond Programmable Shading: In Action

Hot Data Structure

• Disk Caching with Virtual and Physical Pages

Presenter
Presentation Notes
The virtual pages are organized in a oct-tree and each page is itself an oct-tree.

Beyond Programmable Shading: In Action

Hot Data Structure

• Disk Caching with Virtual and Physical Pages
– Start out with a single virtual page.

Presenter
Presentation Notes
From scratch, start out with a single page

Beyond Programmable Shading: In Action

Hot Data Structure

• Disk Caching with Virtual and Physical Pages
– Start out with a single virtual page.
– Render some voxels into the tree until page capacity

is reached.

Presenter
Presentation Notes
And add voxels to it until it reaches a capacity,

Beyond Programmable Shading: In Action

Hot Data Structure

• Disk Caching with Virtual and Physical Pages
– Start out with a single virtual page.
– Render some voxels into the tree until page capacity

is reached.
– Split page into 8 sub-pages and attempt to add the

overflow voxel again.

Presenter
Presentation Notes
then split the page into 8 sub-pages and attempt to add the overflow voxel again.

Beyond Programmable Shading: In Action

Hot Data Structure

• Disk Caching with Virtual and Physical Pages
– Start out with a single virtual page.
– Render some voxels into the tree until page capacity

is reached.
– Split page into 8 sub-pages and attempt to add the

overflow voxel again.
– Store out virtual pages to disk.
– Load/Unload each page’s levels as necessary at

runtime.

Presenter
Presentation Notes
At runtime, you then only load as many levels of a page as necessary.

Beyond Programmable Shading: In Action

Hot Data Structure

• Page capacity can be based on...
– CUDA's shared memory size
– SPU local store size
– Optimum disk streaming performance
– Minimum physical page memory

Presenter
Presentation Notes
The capacity is flexible and can be derived from many different parameters, such as any of the ones listed here.

Beyond Programmable Shading: In Action

Virtual Page Fragmentation

• Traverse indexing oct-tree
– Write out pages according to optimal layout (breadth

first, depth first, etc...)

Presenter
Presentation Notes
If the pages are not of a constant size, the on disk cache will fragment as pages get added and deleted over time. Solving this is a simple process of copying the pages and removing any unused data in the file.

Beyond Programmable Shading: In Action

Physical Page Fragmentation

• Constantly loading / unloading data
fragments memory over time

• Bucket memory into sections and assign
each page to a section.

149

Presenter
Presentation Notes
Also, If you are constantly loading and unloading data, over time the runtime node arrays will fragment as well. This can be solved by bucketing memory into sections where you assign a page to a section based on its particular properties.

Beyond Programmable Shading: In Action

Page Optimization

• Execution time proportional to number of
blocks.

Presenter
Presentation Notes
Most algorithms that execute on a oct-tree representation, instead of an array representation, have an execution time proportional to the number of blocks in the volume rather than the number of voxels. So in this way oct-trees are somewhat like a dimension reducing device.

Beyond Programmable Shading: In Action

Page Optimization

• Execution time proportional to number of
blocks.

• Number of blocks can be reduced through
translation.

Presenter
Presentation Notes
This also reflects that the amount of space occupied by an oct-tree is extremely sensitive to where it is positioned.

Beyond Programmable Shading: In Action

Page Optimization

• Execution time proportional to number of
blocks.

• Number of blocks can be reduced through
translation.

• Translating by 2n doesn’t affect any oct-tree
level smaller than 2n

Presenter
Presentation Notes
It can be shown that translating the oct-tree by two to the power of any number doesn’t affect any nodes smaller than that. Through this property we can develop the following method to optimize an oct-tree.

Beyond Programmable Shading: In Action

Page Optimization

• Create scratch page with enlarged region
– 2n+1 x 2n+1 x 2n+1

• Apply successive translations of magnitude
power of 2 in the x, y, & z directions and
keep track of the number of nodes.

• Store off total translation for ray casting
adjustment.

• O(n * 22n)
– n is the number of levels in the oct-tree

Presenter
Presentation Notes
It exhaustively tests all possible meaningful translations, keeping track of the number of nodes at each step, and choosing the best one. Just to help hit home how important this is,

Beyond Programmable Shading: In Action

Page Optimization

154

Presenter
Presentation Notes
Here is a diagram showing a typical worst case where the translation of the data will really help. If this oct-tree is shifted to the left or right by one,

Beyond Programmable Shading: In Action

Page Optimization

155

Presenter
Presentation Notes
then it consumes almost half the number of nodes. But we can take this one step further.

Beyond Programmable Shading: In Action

Page Optimization

• Minimize outside nodes for faster casting

Presenter
Presentation Notes
If we know the difference between the outside of an object and the inside of an object, we can also tune for the minimum number of outside nodes, thereby improving runtime performance. For example,

Beyond Programmable Shading: In Action

Page Optimization

157

Presenter
Presentation Notes
Here the outside nodes are white, and the inside nodes are grey. Casting a ray vertically here

Beyond Programmable Shading: In Action

Page Optimization

158

Presenter
Presentation Notes
will have a costly performance hit. However,

Beyond Programmable Shading: In Action

Page Optimization

159

Presenter
Presentation Notes
If we translate the data one unit to the left, the performance cost is significantly reduced.

Beyond Programmable Shading: In Action

Data Structure

• Different structures for editing, runtime and
storage.

Presenter
Presentation Notes
If we don’t have intelligent storage formats, the offline storage costs will be huge. Probably on the order of hundreds of gigs. As such, the editing and runtime data structures will be different. The editing will be optimized for disk speed, runtime will be optimized for display performance and size.

Beyond Programmable Shading: In Action

Runtime Data Structure

• child offsets : 32
• diffuse rgb : 3
• specular scale/power : 1
• planes : 12
• normal xyz : 3
• pad : 1
• total : 52 bytes per node

Presenter
Presentation Notes
This is the current runtime data structure. While it is possible to compute the normal from the neighbor voxels, it is a bit expensive to perform at runtime requiring up to 26 additional traversals of the tree or storing neighbor pointers for perfect accuracy or you could approximate the normal by looking at the immediate siblings and doing only a single upwards traversal, It is probably better though at this point just to spend the extra data and pre-compute it.

Beyond Programmable Shading: In Action

Storage Data Structure

• children bit mask : 1
• diffuse rgb : 3
• specular scale/power : 1
• normal xyz : 3
• total : 8 bytes per node

Presenter
Presentation Notes
For the storage data structure, the child pointers are now a simple bit mask where the ordering of the nodes is assumed by the compression and decompression functions.�

Beyond Programmable Shading: In Action

Data Compression

• Compressing child bits
• Compressing Colors

Presenter
Presentation Notes
So how do you compress the gigs or possibly terabytes of data down into something a little bit more manageable? Compressing this data is a simple 3D extension of some compression technology that I was working on, and it breaks down into two separate problems. Problem number one is to compress the child bit masks.

Beyond Programmable Shading: In Action

Compressing Child Bits

164

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250

Presenter
Presentation Notes
Here you can see that if we plot out the statistical distribution of the child bit masks, we can see that they have definite patterns that we can take advantage of. But lets take this one step further. If we separate the bits out by level of the oct-tree

Beyond Programmable Shading: In Action

Compressing Child Bits

0
0.01
0.02
0.03
0.04
0.05

0 50 100 150 200 250

Level 1

0
0.01
0.02
0.03
0.04
0.05
0.06

1 51 101 151 201 251

Level 2

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200 250

Level 3

0

0.02

0.04

0.06

0.08

0 50 100 150 200 250

Level 4

0

0.02

0.04

0.06

0.08

0 50 100 150 200 250

Level 5

0

0.02

0.04

0.06

0 50 100 150 200 250

Level 0

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200 250

Level 6

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 50 100 150 200 250

Level 7

Presenter
Presentation Notes
the distribution varies from the average at each level which allows further compression.�

Beyond Programmable Shading: In Action

Compressing Child Bits

• Split by oct-tree level.
• Entropy Encoding

Presenter
Presentation Notes
So, for each level, gather the bits and perform entropy encoding on the pieces.

Beyond Programmable Shading: In Action

Compressing Color Data

46

15

10 20

35

35

90

87 98 81 95

63

61 65

29

29 35 26 30 25

Presenter
Presentation Notes
Compressing the color data is a process very similar to Wavelet Compression if it were applied to three dimensional data. You take each level of the oct-tree and subtract the value from the higher level. �

Beyond Programmable Shading: In Action

Compressing Color Data

46

-31

-5 +5

-11

0

44

-3 8 -9 5

17

-2 2

-17

0 6 3 1 -4

Presenter
Presentation Notes
So each octant's color data becomes a delta of its parent.

Beyond Programmable Shading: In Action

Compressing Color Data

• Split by oct-tree level.
• Quantization
• Entropy Encoding
• 8:1 expected compression ratio

Presenter
Presentation Notes
So, split the colors by level, quantize them, and then entropy encode them. A somewhat similar 2D technique produces a 24 to 1 compression ratio on average, with the worst case noisy sections compressing 12 to 1. A conservative estimate here is that the 3D data will compress at About 8 to 1. �

Beyond Programmable Shading: In Action

Data Storage Size

• 1.15 bits of positional data per voxel
• Cost savings improves as triangle size

decreases.
• 160 bits per triangle in traditional format

– x,z,y,s,t all 32-bits

• 80 bits per triangle in compressed format
– x,y,z,s,t all 16-bits

• 72 bits equivalent per triangle in oct-tree
– (for next generation)

Presenter
Presentation Notes
It costs an additional 15% of data for the geometry mipmaps. The smaller an equivalent triangle gets, the better the cost savings when using voxels. There is about 160 bits per triangle in a float format, and about 80 bits per triangle in a compressed format. If there are 32 times the number of triangles in a next generation game over a current generation game, then each triangle costs about 72-bits as voxels. Which is about a 2 to 1 compression ratio for the traditional format and About equal to the compressed format.

Beyond Programmable Shading: In Action

Generating the Data

• Every surface can enumerate into voxels.
– Triangles

• 3D Scan Conversion, Volume Projection, Subdivision

Presenter
Presentation Notes
When generating the voxel oct-tree it is important to note that any surface can enumerate to voxels. Triangles enumerate to voxels through various different methods of 3D scan conversion. The first of which is an evolution of 2D scan conversion to 3D. �

Beyond Programmable Shading: In Action

3D Scan Conversion

Z=0

Z=1

Z=2

Z=3

Z=4

=

Presenter
Presentation Notes
Here each third dimension slice of the triangle creates a 2D polygon on that slice. To accomplish this, you simply find the longest two axis of the triangle, scan convert in 2D along those axis and offset each voxel to its appropriate 3D position.�

Beyond Programmable Shading: In Action

Volume Projection

Presenter
Presentation Notes
Another approach is to create a bounding box around the triangle and for each voxel, test to see if it collides with the triangle. Then at each voxel using barycentric coordinates to reconstruct the other properties such as texture coordinates.

Beyond Programmable Shading: In Action

Volume Projection

Presenter
Presentation Notes
Care must be taken with this approach as the center of a voxel can lie outside the borders of a triangle. �

Beyond Programmable Shading: In Action

Subdivision

Presenter
Presentation Notes
Yet another approach is to subdivide the triangle and ensure that there are no cracks by simply comparing the voxel space location and making sure they are all touching, and if not subdivide again. This approach however,

Beyond Programmable Shading: In Action

Subdivision

Presenter
Presentation Notes
has problems with jittered sample locations

Beyond Programmable Shading: In Action

Subdivision

Presenter
Presentation Notes
which are not regular along the surface of the triangle, but this technique is really easy to implement.

Beyond Programmable Shading: In Action

Generating the Data

• Every surface can enumerate into voxels.
– 3D Scan Conversion, Volume Projection, Subdivision

• Thick surfaces are unnecessary

Presenter
Presentation Notes
Surface enumeration sometimes creates voxels inside an object which can never possibly render.

Beyond Programmable Shading: In Action

Generating the Data

• Every surface can enumerate into voxels.
– 3D Scan Conversion, Volume Projection, Subdivision

• Thick surfaces are unnecessary
– Flood fill world and remove unnecessary voxels.

Presenter
Presentation Notes
To fix this, use a mark and sweep filling algorithm to cull out any unnecessary voxels.

Beyond Programmable Shading: In Action

Generating the Data

• Every surface can enumerate into voxels.
– 3D Scan Conversion, Volume Projection, Subdivision

• Thick surfaces are unnecessary
– Flood fill world and remove unnecessary voxels.

• Generate geometry mip-maps

Presenter
Presentation Notes
To generate the geometry mip maps, recursively average the colors of the 8 children together.

Beyond Programmable Shading: In Action

Generating the Data

• Every surface can enumerate into voxels.
– 3D Scan Conversion, Volume Projection, Subdivision

• Thick surfaces are unnecessary
– Flood fill world and remove unnecessary voxels.

• Generate geometry mip-maps
• Perform ray-tracing to light the voxels.

Presenter
Presentation Notes
The next step is to perform ray-tracing to light the voxels. This requires two sets of data, unlit data and lit data.

Beyond Programmable Shading: In Action

Using the Data

• For each pixel on the screen
– Shoot out a ray into the oct-tree and write out the

node number (and depth)

Presenter
Presentation Notes
To use the data, for each pixel on the screen, shoot out a ray into the oct-tree and write out the node number, not the color. If we want to mix ray casting with standard rasterization, we also need to output a depth buffer.

Beyond Programmable Shading: In Action

Oct-tree Ray Traversal

• Similar to KD-tree traversal. Clip the line
with the mid-planes only.

• Tree traversal with two lookup tables.
– One to find which nodes to intersect with a given ray

direction in a worst-case scenario.
– The other to determine the order of intersection.

• Faster than most stackless traversal
methods for CUDA.

Presenter
Presentation Notes
To trace a ray through the oct-tree you clip the line against the mid-planes only. In its most optimal form, this requires two lookup tables to determine which nodes the ray intersects and the other to find the order in which the ray intersects them. I’ve found that this method turns out to be faster for CUDA than the stackless methods that I’ve tried. I didn’t try any methods which require neighbor pointers for memory reasons.

Beyond Programmable Shading: In Action

LOD

• How to handle oct-tree mip-mapping and
when is it necessary to load additional detail
levels?

184

Presenter
Presentation Notes
One of the key problems that I have yet to talk about is when do you load additional detail levels and when do you stop casting because the size of a voxel is less than than the size of a pixel.

Beyond Programmable Shading: In Action

LOD - Stop Depth

• Stop Depth based on pixel and voxel size
[Wald07]

185

Presenter
Presentation Notes
The straight forward method involves during the traversal process computing the size of a voxel and comparing it to the size of a pixel. This works great and produces excellent results, however

Beyond Programmable Shading: In Action

LOD - Stop Depth

• Stop Depth based on pixel and voxel size
[Wald07]

– Oblique surfaces have unnecessary extra detail
• Hurts casting performance by traversing detail that

you won’t see
• Hurts streaming performance by loading unnecessary

data

186

Presenter
Presentation Notes
it also means that were rendering a lot of data that we will never really see on the oblique angles of surfaces. Which also causes us to load that additional data Impacting streaming performance. I’m going to suggest a different technique that fixes these drawbacks.

Beyond Programmable Shading: In Action

LOD - Post Process

• Ray casting outputs node indexes

187

Presenter
Presentation Notes
Have the ray casting process output node indexes,

Beyond Programmable Shading: In Action

LOD - Post Process

• Ray casting outputs node indexes
• A post process which looks at ratios of nodes

to pixels.
– Small feedback buffer (320x180) contains list of

pages which require additional detail.

188

Presenter
Presentation Notes
then in a post process compute the number of pixels per node. If the ratio exceeds a threshold then you load up an additional detail level.

Beyond Programmable Shading: In Action

LOD - Post Process

• Ray casting outputs node indexes
• A post process which looks at ratios of nodes

to pixels.
– Small feedback buffer (320x180) contains list of

pages which require additional detail.

• Up to 20% performance improvement

189

Presenter
Presentation Notes
This improves performance by up to 20 percent.

Beyond Programmable Shading: In Action

Post Process Blur

• Fixes the “Jam your head into a wall”
scenario.

190

Presenter
Presentation Notes
To fix the situation where you jam your head into a wall and see the pixilated voxel cubes, You can use a post process blur

Beyond Programmable Shading: In Action

Post Process Blur

• Fixes the “Jam your head into a wall”
scenario.

• Width of blur kernel related to size of voxel
on screen.

191

Presenter
Presentation Notes
where the width of the blur kernel is related to the size of a voxel on the screen.

Beyond Programmable Shading: In Action

Rendering Dynamic Geometry

• With voxels
– Option 1

• Ray cast or rasterize a triangle mesh
• Transform to base pose
• Trace with local oct-tree
• Allows instancing of geometry

Presenter
Presentation Notes
 So how do you render dynamic geometry using ray casting? There are at least two ways of doing this. You could ray-cast against or rasterize a coarse triangle mesh and transform the ray casting back to the original base mesh where you would then collide with its local oct-tree. This also enables the instancing of geometry as well. �

Beyond Programmable Shading: In Action

Rendering Dynamic Geometry

• With voxels
– Option 1

• Ray cast or rasterize a triangle mesh
• Transform to base pose
• Trace with local oct-tree
• Allows instancing of geometry

– Option 2
• Have two different oct-trees: static & dynamic
• Render both and merge results together with depth information

Presenter
Presentation Notes
 Alternatively, you could dynamically generate an entire side oct-tree Which is separate from the main oct-tree And render the scene twice Once in the static oct-tree and once in the dynamic. Then merge the results of the two renderings.�

Beyond Programmable Shading: In Action

Rendering Dynamic Geometry

• With voxels
– Option 1

• Ray cast or rasterize a triangle mesh
• Transform to base pose
• Trace with local oct-tree
• Allows instancing of geometry

– Option 2
• Have two different oct-trees: static & dynamic
• Render both and merge results together with depth information

• With triangles
– Hybrid rendering via rasterization and deferred shading.

Presenter
Presentation Notes
However, if you don't require perfect shadowing in your game, it would probably be faster for current hardware to use a hybrid approach and render the characters and its shadows using a traditional rasterization method similar to deferred shading.�

Beyond Programmable Shading: In Action

Depth Advance Optimization

• Render a coarse hull of the geometry into a
depth-buffer.
– Automatically calculate from voxel geometry.

• Start the ray casting at the depth-buffer
values.

Presenter
Presentation Notes
There is also a particular optimization that is possible if you generate a coarse hull of the geometry and render it through standard rasterization. Using the depth information from that coarse hull you can then move forward the start of the ray casting to the depth that was rasterized. I did some preliminary tests by using the previous frame’s depth buffer to do almost the same thing

Beyond Programmable Shading: In Action

Depth Advance Optimization

• Render a coarse hull of the geometry into a
depth-buffer.
– Automatically calculate from voxel geometry.

• Start the ray casting at the depth-buffer
values.

• Skips most of the traversal process.
– Up to 2x speed improvement

Presenter
Presentation Notes
And the main rendering kernel was up to twice as fast. Another side benefit is that

Beyond Programmable Shading: In Action

Depth Advance Optimization

• Render a coarse hull of the geometry into a
depth-buffer.
– Automatically calculate from voxel geometry.

• Start the ray casting at the depth-buffer
values.

• Skips most of the traversal process.
– Up to 2x speed improvement
– Less sensitive to scene complexity

Presenter
Presentation Notes
the traversal process was much less sensitive to scene complexity. This optimization is important when the camera is looking at lots of oblique surfaces Which causes lots of rays to almost intersect those surfaces without actually ever hitting them. It is also important when the camera is very close to a highly detailed wall Which the camera may or may not even be looking at.

Beyond Programmable Shading: In Action

Adaptive Sub-Sampling

• After rendering the scene, perform a Sobel
edge filter over the frame buffer to figure
out where additional rays would improve
the quality of the image.

• Cast additional rays.
• Repeat until 16 ms.

Presenter
Presentation Notes
Another interesting thing that you can do is adaptive sub-sampling over the scene. Some problems with this approach

Beyond Programmable Shading: In Action

Adaptive Sub-Sampling Problems

• Inherently always sampling the most
divergent parts of the scene

• Can manage performance hit by sampling
highly aliased to less aliased in chunks

Presenter
Presentation Notes
are that it is always sampling the most divergent parts of the scene and hence the most expensive to process. This can be mitigated through various sorting methods, but not eliminated.

Beyond Programmable Shading: In Action

Infinite Surface Detail

• Oct-tree node's recursively point back in on
themselves to create an infinite amount of
detail

• Create detail octree sub-segments to
simulate rough, smooth, porous, sharp
edges, etc..

• Programatically simulate virtual detail
levels.

Presenter
Presentation Notes
Specially designed recursive oct-trees can be appended to leafs of an oct-tree which can simulate a near infinite amount of detail. You can simulate many different types of surfaces. Alternatively you can programatically generate additional surface detail as well.

Beyond Programmable Shading: In Action

How much time to innovate?

• 1 year tools
• 3 months runtime

Presenter
Presentation Notes
So how much time is it going to take to come up with a robust solution here? About a year on tools and approximately 3 more months for additional runtime work.

Beyond Programmable Shading: In Action

Expected Runtime Performance

• 33% of the time rendering characters / etc
• 66% of the time rendering world
• Ray-casting the world must complete in

~20ms for 30 FPS
• Theoretically possible on today's technology

at 720p and 30 fps (GeForce 8800 Series)

Presenter
Presentation Notes
I expect to use one third of the rendering time on things other than ray casting. So, in order to run at 30 frames per second, the world would have to render in under 20 milliseconds. This is theoretically possible on the Geforce 8800 series.

Beyond Programmable Shading: In Action

Expected Runtime Performance

• 33% of the time rendering characters / etc
• 66% of the time rendering world
• Ray-casting the world must complete in

~20ms for 30 FPS
• Theoretically possible on today's technology

at 720p and 30 fps (GeForce 8800 Series)
– Theory falls a little short of reality.

Presenter
Presentation Notes
Unfortunately, reality falls a little short here and 15 fps is more likely.

Beyond Programmable Shading: In Action

How would this affect a platform
launch?
• Generational skip in geometric complexity
• Next gen platforms 4 times better at least
• 60 FPS at 1080p with Anti-aliasing

Presenter
Presentation Notes
How would this affect a platform launch? What this technology effectively provides is a generational skip in geometric complexity. With next generation platforms likely being at least 4 times better than current generation technology, 60 frames per second at 1080p with anti-aliasing is completely plausible.

Beyond Programmable Shading: In Action

Special Thanks

• Paul Debevec
– Light probes used with permission

• Dimitry Parkin
– www.parkparkin.com

• John Carmack
• Cass Everitt
• Mark Harris
• Nathaniel Duca
• Aaron Lefohn
• Mike Houston
• Tom Forsyth

205

• Sony
• Intel
• Nvidia

Presenter
Presentation Notes
I’d like to thank all these great people who helped make this talk possible.

http://www.parkparkin.com/�

Beyond Programmable Shading: In Action 206

Presenter
Presentation Notes
A live demonstration.

Beyond Programmable Shading: In Action

Questions

Jon Olick (jon.olick@gmail.com)
id Software

mailto:jon.olick@gmail.com�

Beyond Programmable Shading: In Action

References
– http://www.sci.utah.edu/~wald/Publications/2007/

MROct/download/mroct.pdf
– [Wald07]

208

http://www.sci.utah.edu/~wald/Publications/2007/MROct/download/mroct.pdf�
http://www.sci.utah.edu/~wald/Publications/2007/MROct/download/mroct.pdf�

	�Current Generation Parallelism�In Games�
	Brief History of Parallelism
	Brief History of Parallelism
	Brief History of Parallelism
	Brief History of Parallelism
	Brief History of Parallelism
	Brief History of Parallelism
	Current State of Parallelism
	Cell broadband engine™
	PLAYSTATION®3 Processor Overview
	PLAYSTATION®3 Processor Overview
	Primary Programming Challenges
	MD6 Animation Processing
	MD6 Animation Processing
	MD6 Animation Processing
	MD6 Animation Processing
	MD6 Animation Processing
	MD6 Animation Processing
	MD6 Animation Webs
	MD6 Animation Processing
	Partial Animation Blending
	Varying parameter treatment
	Varying parameter treatment
	Varying parameter treatment
	Geometry Processing
	Two modes of usage
	Two modes of usage (cont)
	SPU Geometry Pipeline Stages
	Vertex Decompression
	Vertex Attributes
	Vertex Decompression
	24bit Unit Vector
	24bit Unit Vector
	N-bit Fixed Point with integer offsets
	Index Decompression
	Index Table Construction
	Index Cache Optimizer
	Index Decompression
	Index Decompression
	Index Decompression
	Index Decompression
	Index Decompression
	Index Decompression
	Index Decompression
	Blend Shapes
	Blend Shapes in MLB® 08 The Show
	Skinning
	Skinning on SPUs
	Skinning on SPUs
	Skinning on SPUs
	Discrete Progressive Mesh
	At an LOD there are two types of vertexes
	As the LOD level decreases, the children “slide” towards their parents
	The children continue to move towards their parents
	At the next integral LOD, all child vertexes disappear as do the triangles
	Continuous Progressive Mesh
	Vertex set about to undergo continuous progressive mesh
	A single vertex set can straddle several LOD ranges
	Vertexes move depending on their distance
	Triangle Culling
	Up to 70% of triangles do not contribute to final image.
	Off Screen Triangles
	Back Facing Triangles
	Zero Area Triangles
	Zero Area Triangles
	No Pixel Triangles
	Triangle Culling
	Multisampling adds some complications…
	Culled
	Triangle Culling
	Compression for Output
	Slide Number 72
	When done, the vertex attributes are compressed into one output stream
	Output Buffering Schemes
	Double Buffer
	It is possible to completely fill a buffer
	Double buffering adds a frame of lag
	Single Buffering
	Single Buffering has a shorter pipeline
	SPU↔RSX™ Synchronization �Using Local Stalls
	SPU will overwrite local stalls when it outputs a set of new commands
	Ring Buffers
	RSX™ writes a semaphore once a chunk of data has been consumed
	Each SPU has its own buffer
	Geometry Performance
	Software Pipelined C with SPU Intrinsics
	Software Pipelined C with SPU Intrinsics
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Next Generation Parallelism�In Games
	Game Entity Processing
	Game Entity Processing
	Game Entity Processing
	Game Entity Processing
	Game Entity Processing
	Ray
	Why Ray Casting?
	Why Ray Casting?
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Why Ray Casting?
	Why Ray Casting?
	Why Ray Casting?
	Screenshot From E3 Rage Video
	Screenshot From E3 Rage Video
	Why Ray Casting?
	Current State of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization
	Future of Rasterization x2
	Future of Rasterization x2
	Future of Rasterization x2
	Future of Rasterization x2
	Future of Rasterization x2
	Why voxels, and not triangles?
	Why voxels, and not triangles?
	Why voxels, and not triangles?
	Why voxels, and not triangles?
	Why is the control flow efficient?
	Why is the control flow efficient?
	Why is the control flow efficient?
	Why is the control flow efficient?
	Voxel Mip Mapping – Thin Walls
	Voxel Mip Mapping – Thin Walls
	Voxel Mip Mapping – Thin Walls
	Voxel Mip Mapping – Thin Walls
	Caveats of Ray-Tracing?
	Sparse Voxel Oct-trees
	Data Structure
	Is Disk Caching a Valid Lever?
	Hot Data Structure
	Hot Data Structure
	Hot Data Structure
	Hot Data Structure
	Hot Data Structure
	Hot Data Structure
	Virtual Page Fragmentation
	Physical Page Fragmentation
	Page Optimization
	Page Optimization
	Page Optimization
	Page Optimization
	Page Optimization
	Page Optimization
	Page Optimization
	Page Optimization
	Page Optimization
	Page Optimization
	Data Structure
	Runtime Data Structure
	Storage Data Structure
	Data Compression
	Compressing Child Bits
	Compressing Child Bits
	Compressing Child Bits
	Compressing Color Data
	Compressing Color Data
	Compressing Color Data
	Data Storage Size
	Generating the Data
	3D Scan Conversion
	Volume Projection
	Volume Projection
	Subdivision
	Subdivision
	Subdivision
	Generating the Data
	Generating the Data
	Generating the Data
	Generating the Data
	Using the Data
	Oct-tree Ray Traversal
	LOD
	LOD - Stop Depth
	LOD - Stop Depth
	LOD - Post Process
	LOD - Post Process
	LOD - Post Process
	Post Process Blur
	Post Process Blur
	Rendering Dynamic Geometry
	Rendering Dynamic Geometry
	Rendering Dynamic Geometry
	Depth Advance Optimization
	Depth Advance Optimization
	Depth Advance Optimization
	Adaptive Sub-Sampling
	Adaptive Sub-Sampling Problems
	Infinite Surface Detail
	How much time to innovate?
	Expected Runtime Performance
	Expected Runtime Performance
	How would this affect a platform launch?
	Special Thanks
	Slide Number 206
	?
	References

