

PLAYSTATION®Edge

PLAYSTATION®Edge

Mark Cerny

Jon Olick

Vince Diesi

ICE Team
WWS America

Advanced Technology Group
WWS Europe

Tools and Technology
WWS America

Mark Cerny

Jon Olick

Vince Diesi

GCM Replay

 March release

 RSX Performance Analysis

 Speculative Performance Analysis

PLAYSTATION®Edge Philosophy

 Discrete pieces of technology

 Targeted for easy adoption

 Show first party best practices

PLAYSTATION®Edge

Component Overview

 Animation System

 Geometry Processing

 Compression

 GCM Replay

PLAYSTATION®Edge

Component Overview

 Animation System

 Blend trees of arbitrary depth

 Several layers of compression

 High performance

 Very flexible

PLAYSTATION®Edge

Component Overview

 Geometry Processing

 Skinning on SPUs

Offload the RSX

 Triangle Culling on SPUs

 Remove unnecessary RSX processing

 Blend Shapes on SPUs

Offload the PPU

 Compressed Data formats

 SPUs can use better data compression than the RSX

PLAYSTATION®Edge

Component Overview

 Compression

 Fast zlib decompression implemented for the

SPUs

 Increases effective bandwidth

from BD-ROM

 Useful for high speed streaming

 40MB/sec with ~25% of an SPU

PLAYSTATION®Edge

Component Overview

 GCM Replay

 New tool for use with the RSX

 Analysis

 Debugging

 Profiling

 Full source code available

PLAYSTATION®Edge

Component Overview

 SPU code

 Runs as SPURS jobs

 C with Intrinsics

 PPU and tools code written in C with some C++

 libGCM used as RSX interface

PLAYSTATION®Edge

Component Overview

 Offline Tools Pipeline

 Generates binary data used by animation and

geometry runtime

 Collada compatible pipeline

 Multi-layered approach

 Will be released as part of the PlayStation 3

SDK to all licensed developers

PLAYSTATION®Edge

Component Overview

PLAYSTATION®Edge

Animation

Animation Processing

Game
Logic

Animation Processing

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

SPU

PPU

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

PPU

SPU

SPU Capture

no significant

DMA stall

Low Level

Functions

Blend Tree Parsing,

Flow Control

Additional Features

 Additive Blending

 Partial Animations

 Per-joint weight

 Compression

 Static joint parameters removed

 Varying joint parameters expressed as

sparse keyframes

Varying parameter treatment

Varying parameter treatment

Varying parameter treatment

Offline Tools Layout

Offline Tools Layout

 Tools generate

 Joint hierarchy

 Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

 Tools generate

 Joint hierarchy

 Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

 Tools generate

 Joint hierarchy

 Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

Low Level

Animation Partitioner
Compression Tools

 Tools generate

 Joint hierarchy

 Compressed animation data

PLAYSTATION®Edge

Geometry

Two modes of usage

 Primary mode

 Use PLAYSTATION®Edge offline tools

 Partition into vertex sets

 Use indexed triangles

 All features of pipeline can be used

SPU

Two modes of usage (cont)

 Secondary mode

 Data generated by other tools

 Formats other than indexed triangles

 Non-partitioned objects

 Subset of pipeline features can be used

SPU

SPU Geometry Pipeline Stages

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Vertex Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Vertex attributes can be input into the

SPUs in multiple arrays

Unique Vertex
Array 0

Instance Vertex
Array 1

Vertex information is decompressed

into tables of floats

Float TablesUnique Vertex
Array 0

Instance Vertex
Array 1

24bit Unit Vector

 Smallest 2 compression
 Two smallest components with 10 bits each

 Encoded from –sqrt(2)/2 to +sqrt(2)/2

 Largest component reconstructed via
 Largest = sqrt(1 – smallestA2 – smallestB2)

24bit Unit Vector

 Smallest 2 compression
 Two smallest components with 10 bits each

 Encoded from –sqrt(2)/2 to +sqrt(2)/2

 Largest component reconstructed via
 Largest = sqrt(1 – smallestA2 – smallestB2)

 One additional bit to represent W as +1 or -1
 For constructing bi-normal from normal and

tangent.

N-bit Fixed Point
with integer offsets

 Simple n.x fixed point values
 Per-segment integer offset

 Bit count may vary from attribute to
attribute

Index Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Index Table Construction

 Index table is created by a vertex cache

optimizer

RSX Best Practices

Thursday 2:30 pm – 3:30 pm

Room 3001, West Hall

 Supplied in PlayStation 3 SDK

 First party research

 Importance of mini-cache

Index Buffer Cache Optimizer

Index Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Index Decompression

 Provided vertex cache optimizer

produces very regular index data

 Index patterns are easily compressed

Index Decompression

0

1

2

Triangle Indexes

0 21

Index Decompression

2

0

1

Triangle Indexes

2 10

Index Decompression

85% compression

6.5x more triangles

Index Decompression

Blend Shapes

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Skinning

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Skinning on SPUs

void SkinVs(float4 inPosition : ATTR0, float4 weights : ATTR3,

float4 matrixIndex : ATTR4,

out float4 position : POSITION,

uniform float4 joints[72], uniform float4x4 modelViewProj)

{

position = 0;

for (int i = 0; i < 4; i++)

{

float idx = matrixIndex[i];

float3x4 joint = float3x4(joints[idx+0], joints[idx+1],

joints[idx+2]);

position += weights[i] * mul(joint, inPosition);

}

position = mul(modelViewProj, position);

}

Skinning on SPUs

30% Performance Improvement

Skinning on SPUs

30% Performance Improvement

Shadow map generation.... 70%!

Triangle Culling

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Up to 70% of triangles do not contribute to
final image.

Off Screen Triangles

Back Facing Triangles

Zero Area Triangles

Zero Area Triangles

No Pixel Triangles

Triangle Culling

Multisampling adds some complications…

Culled

Triangle Culling

10% to 20%

Performance Improvement

Compression for Output

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Float Tables

When done, the vertex attributes are

compressed into one output stream

Output
Vertex Array

Float Tables

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

Low Level

Geometry Partitioner
Cache-Optimizer

Geometry Runtime Details

“Just in Time” Single Buffer Strategy

 SPUs generate data in same frame as

RSX consumes it

 System tuned so that the RSX rarely

waits on SPUs

 SPU  RSX synchronization in place

to handle rare cases

Geometry System

Rendering Sequence

 On the PPU
 Create a SPURS job

 Place most RSX commands in the command
buffer

 Leave space in the RSX command buffer for the
SPU to fill in later

 On the SPU
 Process geometry

 Write final commands to RSX command buffer

Synchronization Techniques

RSX  SPU synchronization

by manipulation of put pointer

RSX Best Practices

Thursday 2:30 pm – 3:30 pm

Room 3001, West Hall

RSX  SPU synchronization

through “local stalls”

void cellSpursJobMain(CellSpursJobContext* stInfo,

CellSpursJob256 *job)

{

edgeInitialize(...);

edgeDecompressVertexes(...);

edgeProcessBlendShapes(...);

edgeSkinVertexes(...);

edgeDecompressIndexes(...);

edgeTransformVertexesForCull(...);

edgeCullTriangles(...);

if(!edgeAllocateOutputSpace(...))

return;

edgeOutputIndexes();

edgeCompressVertexes();

edgeOutputVertexes();

edgeFillPushBufferHole(...);

}

void WaveVertexes(float *positions, unsigned numVertexes,

float t)

{

for(unsigned i = 0; i < numVertexes; ++i)

positions[i*4+0] +=

sinf(t + positions[i*4+0] +

positions[i*4+1]) * 10.f;

}

void cellSpursJobMain(CellSpursJobContext* stInfo,

CellSpursJob256 *job)

{

edgeInitialize(...);

edgeDecompressVertexes(...);

edgeProcessBlendShapes(...);

edgeSkinVertexes(...);

WaveVertexes(…);

edgeDecompressIndexes(...);

edgeTransformVertexesForCull(...);

edgeCullTriangles(...);

if(!edgeAllocateOutputSpace(...))

return;

edgeOutputIndexes();

edgeCompressVertexes();

edgeOutputVertexes();

edgeFillPushBufferHole(...);

}

Software Pipelined C with

SPU Intrinsics
do

{

m1 = in1;

in1 = si_lqx(pIn1, offset);

m2 = in2;

in2 = si_lqx(pIn2, offset);

m3 = in3;

in3 = si_lqx(pIn3, offset);

temp2 = si_selb(m3, m1, mask_0X00);

si_stqx(out1, pOut1, offset);

temp3 = si_selb(m2, m1, mask_00X0);

si_stqx(out2, pOut2, offset);

temp1 = si_selb(m1, m2, mask_0X00);

si_stqx(out3, pOut3, offset);

offset = si_ai(offset, 0x30);

out2 = si_shufb(m2, temp2, qs_bCaD);

out1 = si_selb(temp1, m3, mask_00X0);

out3 = si_shufb(m3, temp3, qs_caBD);

} while(si_to_int(offset) != 0);

Software Pipelined C with

SPU Intrinsics

20x faster than

straight C/C++

do

{

m1 = in1;

in1 = si_lqx(pIn1, offset);

m2 = in2;

in2 = si_lqx(pIn2, offset);

m3 = in3;

in3 = si_lqx(pIn3, offset);

temp2 = si_selb(m3, m1, mask_0X00);

si_stqx(out1, pOut1, offset);

temp3 = si_selb(m2, m1, mask_00X0);

si_stqx(out2, pOut2, offset);

temp1 = si_selb(m1, m2, mask_0X00);

si_stqx(out3, pOut3, offset);

offset = si_ai(offset, 0x30);

out2 = si_shufb(m2, temp2, qs_bCaD);

out1 = si_selb(temp1, m3, mask_00X0);

out3 = si_shufb(m3, temp3, qs_caBD);

} while(si_to_int(offset) != 0);

EDGE_DECOMPRESS_INIT_GLOBAL(...);

EDGE_DECOMPRESS_INIT_F32(EDGE_ATTRIBUTE_USAGE_POSITION,...);

EDGE_DECOMPRESS_INIT_F16(EDGE_ATTRIBUTE_USAGE_GENERIC,...);

EDGE_DECOMPRESS_LOAD_COMMON();

do

{

EDGE_DECOMPRESS_LOOP_START();

EDGE_DECOMPRESS_LOOP_F32(...);

EDGE_DECOMPRESS_LOOP_F16(...);

EDGE_DECOMPRESS_LOOP_END();

} while (! EDGE_DECOMPRESS_LOOP_DONE());

EDGE_DECOMPRESS_FINALIZE_F32(...);

EDGE_DECOMPRESS_FINALIZE_F16(...);

PLAYSTATION®Edge
Geometry Performance

1 SPU

1 SPU

800,000+
Triangles Per Frame

at 60 Frames per Second

1 SPU

800,000+
Triangles Per Frame

at 60 Frames per Second

60% of which are culled!

PLAYSTATION®Edge

Beta Release

MARCH 2007

GCM Replay
SCE World Wide Studios

GCM Replay

GCM Replay is a new tool for RSX

Analysis

Debugging

Profiling

GCM Replay - Overview

 GCM Replay consists of two parts

 Small PS3 runtime library

 Main Application - runs on a Windows PC + PS3 Dev-Tool

Host PC

GCM Replay

Game + libgcmReplay.a

PS3 Dev-ToolGCM Replay

PS3 Dev-Tool

GCM Replay - Overview

 Uses RSX rather than simulation

 Supports highly detailed analysis

 Far greater than a typical real-time profiler would allow

 Supporting scene-wide analysis

 To the analysis of individual draw calls, vertices and pixels

 Focus on off-line performance analysis features

 Many of which have never been available before

GCM Replay

Workflow and Behind the Scenes

GCM Replay - Overview

 Run your game with the GCM Replay runtime linked in

 Once you reach a point of interest…

Hit Capture

Capturing the Command Buffer

 GCM Replay will traverse the Command Buffer

 Transfer Command Buffer Memory to the PC

 Each command is analysed

Command Buffer

Host PC

GCM Replay

Command Buffer

Memory

Command Buffer

Host PC

GCM Replay

Render Targets

Textures

Graphics Resource

Memory

Capturing the Command Buffer

Geometry

Vertex & Fragment

Programs

Capturing the Command Buffer

 Once the process is complete - GCM Replay

has all the data it needs to

REPLAY your Command Buffer

Capturing the Command Buffer

Command Buffer

Ring Buffer

Character 0

Character 1

Character 2

Character 3

Character 4

Character 5

Character 6

Character 7

Character 8

Character 9

Character 10

Character 11

Character 12

Character 13

 Capturing the Command Buffer can be very complex

Capturing the Command Buffer

 All RSX usage models can be captured with GCM Replay

Command Buffer

Ring Buffer

GCM Replay Integration

 Only takes a few minutes

 At initialisation

// Initialise the capture API

cellGcmReplay::Network::Init();

cellGcmReplay::Capture::Init();

GCM Replay Integration

 Then every frame…

// Call a single heartbeat function

cellGcmReplay::Heartbeat(&yourContext);

 Add optional annotations

// Useful for adding semantics

cellGcmReplay::InsertDebugString(“Bloom Pass”);

GCM Replay Captures

Analyse it immediately

OR

Save for analysis later

GCM Replay Application

GCM Replay

Analysis and Debugging Views

Draw Context View

 Provides primary means of

Command Buffer navigation

 Lists all Draw / Clear calls

 Plus their associated setup

state

Draw Context View

 Expand to see your original

Gcm API calls

 Full source-level disassembly

 Parameter Annotations

 User Annotations

Raw Command Buffer View

 Displays full Command Buffer disassembly

Errors

highlighted

in RED

Problems View

 Summarises all warnings and errors

 Click on problem - jump to offending Draw Context

Render State View

 See all Resources referenced by current Draw Context

 Click on Link Label to select that Resource for previewing

Render Targets View

Render Targets View

Render Targets View

 Puts internal analysis results at your finger tips

 So you can instantly answer…

Render Targets View

 What Draw Contexts write to this Render Target?

 Is this Render Target aliased as a Texture?

 Is this Render Target setup for

 Double-Speed rendering?

 Early-Z optimisation?

Render Target Refresh

Hit Refresh!

Render Target Refresh

1. Transfer Command Buffer and Resources

2. Kick Command Buffer up to the current Draw Context

Allows you to single step your rendering process

Both forwards and backwards in time

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Pixel Analysis

Actual pixel

values written

by RSX

Render Target Memory Dump

Preview Render Target

Modify the Command Buffer before

its kicked

Preview Render Target as Wireframe

Preview Render Target Overdraw

Render State View

 What other Resource types can we select

for analysis?

Textures View

 View referenced Textures

 Including

 State

 Complete Mip-chain

 Cube Faces

 Volume Slices

Vertex Arrays View

Index Arrays View

Draw Data View

 See vertices kicked by current Draw Context

 Each element of each referenced attribute

Vertex Programs View

 Full disassembly

 Stalls highlighted in Red

 Optionally show

 Instruction latencies

 Dual issue

Vertex Program Constants View

 See Vertex Program Constants

 Used by current Draw Context

 Colour-coded by analysis passes

 Blue - newly modified

 Green - inherited from previous

 Red – redundant sets

Fragment Programs View

Fragment Program Debugging

Fragment Program Debugging

Fragment Program Debugging

Fragment Program Debugging

GPU Registers View

 Brief Mode - registers set

in current Draw Context

 Descriptive Mode -

entire register state

 Verify RSX state is what

you expect

Preview Resource Views

 Exist for all Resource types

 Analyse

 Draw Context

 Entire Scene

 All Preview Views have unique features

 Share common functionality - including

 Cross-referencing

 Search

 Memory Dump

 Export

Memory Layout View

 See your Memory map

 Resource locations in

 Local Memory

 Host Memory

Command Buffer Overview

 Command Buffer

breakdown

 Categorised by

Command type

GCM Replay

Profiling Features

GCM Replay Profiling

 Supports a number of flavours

 RSX executes your Command Buffer many times

 Use of RSX hardware counters and timing facilities

Ensures timings and event counts are accurate

Sub-Unit Utilisation

 See % utilisation of each major pipeline unit

Sub-Unit Utilisation

 On a Draw Context basis

 Each utilisation is drawn overlapped

(not stacked)

 Result - a sorted list of optimisation

targets

 Clear indication of the bottleneck

Smallest

utilisation

Biggest

utilisation -

Bottleneck!

Sub-Unit Utilisation

User annotations

mark intervals

Draw Contexts –

selectable for

further analysis

Sub-Unit Utilisation

Zoom into areas

of interest

Performance Counters

 Provide more detail

 Profile additional events

 GCM Replay exposes

 Hardware counters

 Derived counters

 Workflow

 Select counters

 Hit Profile

 Analyse results

Performance Counters

 Multiple counters graphed simultaneously

Highlight counters of interest

Performance Counters

 Raw counters in tabulated form

 Sort on individual keys

 Select Draw Contexts of

interest

Story so far…

 Using GCM Replay you can

Capture

Analyse and Debug

Modify and Replay

Profile

What’s the next BIG question?

How do I make it run faster?

RSX

 Deep and complex pipeline

 Large array of rendering options

 Difficult to predict

 Effects of your engine changes?

 What optimisations matter most?

What-If… I change the anisotropic

filtering level on my race track?

 How much time would that buy back?

 What would it look like?

 What’s the best compromise?

What-If… I re-optimise my meshes?

For example

 Convert triangle strips to triangle lists

 Interleave all attribute streams

 Optimise index tables for all vertex caches

How would these effect RSX performance?

What-If… If I write a near perfect

visibility culler?

 That culls on a per triangle basis

 Removes all triangles outside the viewport

 All back-facing triangles

 Zero-area degenerate triangles

 Micro-triangles that miss all pixel centres

And…

It runs on the SPUs and removes all triangles

before they hit the RSX

How much time would that buy back?

With GCM Replay you can answer all these

questions…

Without touching a single line of code

GCM Replay What-Ifs

 A new form of Conditional Profiling

 Make fundamental changes to your

 Command Buffer

 Resources

 All from within GCM Replay

 Measure observed performance difference

 See % Gain or Loss

What-if… Example

 Through analysis I realise…

 Not all my textures are

compressed

 Not all my textures have a

mip-chain

My Scene

?

What-If… Workflow

 Apply to

 A Draw Context OR all Draw Contexts

 A Resource OR all Resources of that type

Define scope

What-If… Workflow

 Select What-Ifs from a filtered set

Select

What-If
Hit Add

What-If… Workflow

 Optionally tweak What-If parameters

List of What-Ifs

to apply

Hit Profile

What-Ifs – Behind the Scenes

 Profile baseline

 For each What-If condition

 Make modifications

 Profile

 Save results

 In this example

 Generate mip-chains

 Compress Textures

 Modify Texture state in Command Buffer

What-If… Results

 Summarise

 % gain for each What-If

 Comments on actual modifications made

 Total % gain for all What-Ifs

Instantly see the change in performance

What-If… Workflow

 Two options

 Profile – with new What-Ifs, same baseline

 Commit – make new baseline

 Iterate Process

 Performance target reached

 We’re as close as we can get

Incorporate the optimisations into your game

What-If… Remove Redundancy

 What if we remove all redundant commands?

What-If… Optimise FP Constant Patching

 What if all constants are set externally?

 Directly patched by PPU or SPUs

Moroccan Scene Results

 Applying all four What-Ifs…

Complete Texture Mip-chains +11.39%

Compress Textures +0.82%

Remove Global Redundancy +4.09%

Optimise Fragment Constant Patching +4.73%

 Total Performance Gain

~21%
faster than original scene

PLAYSTATION®Edge Demo

What-If… Trim Triangles

 What if we trim all triangles

 Off-screen

 Back facing

 Degenerate

 Don’t hit any pixel centres

 Set scope to all Draw Contexts

 Enable all triangle tests

 Hit Profile

What-If… Trim Triangles

 19% performance gain from Triangle Culling alone

GCM Replay What-Ifs

 Evaluate fundamental engine changes
 Without actually having to make them

 Provide rapid feedback
 See What-If… results within minutes

 Help you make informed decisions
 What optimisations matter most?

 How close are we to theoretical maximums?

 Help avoid wasting time on fruitless changes
 Save precious development time

The What-Ifs
 Global

 Remove Redundancy

 For each Draw Context

 Optimise all Triangle Lists

 Convert Strips to Lists

 Change Stream Interleaving

 Trim Triangles

 Trim Batches

 Depth-only Pass

 Disable unused Attributes

 Disable unused Interpolators

 Sort Batches Front to Back

 Replace with Single Colour FP

 Non-disclosed x3

 Perfect Early-Z Settings

 Convert to Indexed Drawing

 Disable unused Clear Components

 Remove redundant Clears

 Remove completely filled Clears

 Remove non-varying Attributes

 For each Render Target

 Remove redundancy

 Non-disclosed

 For each Texture

 Switch Memory Context

 Remove redundancy

 Convert to DXT1

 Convert to DXT5

 Complete mip-chain

 Override filtering modes

 Override LOD bias

 For each Vertex Program

 Remove redundancy

 Non-disclosed

 For each Fragment Program

 Optimise Constant Patching

 Remove redundancy

 Non-disclosed x2

GCM Replay Experiments

 Extend the What-If concept

 Experiments – automatically replay selected

What-Ifs with many times

 Finds the optimal settings for your game

 Example – Texture Placement Experiment

GCM Replay – The Future

 More What-Ifs

 More Experiments

 Extend Edit-and-Continue

Modify all Resource types

Hot-load replacement Resources

 Vertex and Fragment Program Debugging

GCM Replay

BETA Release - March 2007

