

PLAYSTATION®Edge

PLAYSTATION®Edge

Mark Cerny

Jon Olick

Vince Diesi

ICE Team
WWS America

Advanced Technology Group
WWS Europe

Tools and Technology
WWS America

Mark Cerny

Jon Olick

Vince Diesi

GCM Replay

 March release

 RSX Performance Analysis

 Speculative Performance Analysis

PLAYSTATION®Edge Philosophy

 Discrete pieces of technology

 Targeted for easy adoption

 Show first party best practices

PLAYSTATION®Edge

Component Overview

 Animation System

 Geometry Processing

 Compression

 GCM Replay

PLAYSTATION®Edge

Component Overview

 Animation System

 Blend trees of arbitrary depth

 Several layers of compression

 High performance

 Very flexible

PLAYSTATION®Edge

Component Overview

 Geometry Processing

 Skinning on SPUs

Offload the RSX

 Triangle Culling on SPUs

 Remove unnecessary RSX processing

 Blend Shapes on SPUs

Offload the PPU

 Compressed Data formats

 SPUs can use better data compression than the RSX

PLAYSTATION®Edge

Component Overview

 Compression

 Fast zlib decompression implemented for the

SPUs

 Increases effective bandwidth

from BD-ROM

 Useful for high speed streaming

 40MB/sec with ~25% of an SPU

PLAYSTATION®Edge

Component Overview

 GCM Replay

 New tool for use with the RSX

 Analysis

 Debugging

 Profiling

 Full source code available

PLAYSTATION®Edge

Component Overview

 SPU code

 Runs as SPURS jobs

 C with Intrinsics

 PPU and tools code written in C with some C++

 libGCM used as RSX interface

PLAYSTATION®Edge

Component Overview

 Offline Tools Pipeline

 Generates binary data used by animation and

geometry runtime

 Collada compatible pipeline

 Multi-layered approach

 Will be released as part of the PlayStation 3

SDK to all licensed developers

PLAYSTATION®Edge

Component Overview

PLAYSTATION®Edge

Animation

Animation Processing

Game
Logic

Animation Processing

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

SPU

PPU

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

PPU

SPU

SPU Capture

no significant

DMA stall

Low Level

Functions

Blend Tree Parsing,

Flow Control

Additional Features

 Additive Blending

 Partial Animations

 Per-joint weight

 Compression

 Static joint parameters removed

 Varying joint parameters expressed as

sparse keyframes

Varying parameter treatment

Varying parameter treatment

Varying parameter treatment

Offline Tools Layout

Offline Tools Layout

 Tools generate

 Joint hierarchy

 Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

 Tools generate

 Joint hierarchy

 Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

 Tools generate

 Joint hierarchy

 Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

Low Level

Animation Partitioner
Compression Tools

 Tools generate

 Joint hierarchy

 Compressed animation data

PLAYSTATION®Edge

Geometry

Two modes of usage

 Primary mode

 Use PLAYSTATION®Edge offline tools

 Partition into vertex sets

 Use indexed triangles

 All features of pipeline can be used

SPU

Two modes of usage (cont)

 Secondary mode

 Data generated by other tools

 Formats other than indexed triangles

 Non-partitioned objects

 Subset of pipeline features can be used

SPU

SPU Geometry Pipeline Stages

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Vertex Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Vertex attributes can be input into the

SPUs in multiple arrays

Unique Vertex
Array 0

Instance Vertex
Array 1

Vertex information is decompressed

into tables of floats

Float TablesUnique Vertex
Array 0

Instance Vertex
Array 1

24bit Unit Vector

 Smallest 2 compression
 Two smallest components with 10 bits each

 Encoded from –sqrt(2)/2 to +sqrt(2)/2

 Largest component reconstructed via
 Largest = sqrt(1 – smallestA2 – smallestB2)

24bit Unit Vector

 Smallest 2 compression
 Two smallest components with 10 bits each

 Encoded from –sqrt(2)/2 to +sqrt(2)/2

 Largest component reconstructed via
 Largest = sqrt(1 – smallestA2 – smallestB2)

 One additional bit to represent W as +1 or -1
 For constructing bi-normal from normal and

tangent.

N-bit Fixed Point
with integer offsets

 Simple n.x fixed point values
 Per-segment integer offset

 Bit count may vary from attribute to
attribute

Index Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Index Table Construction

 Index table is created by a vertex cache

optimizer

RSX Best Practices

Thursday 2:30 pm – 3:30 pm

Room 3001, West Hall

 Supplied in PlayStation 3 SDK

 First party research

 Importance of mini-cache

Index Buffer Cache Optimizer

Index Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Index Decompression

 Provided vertex cache optimizer

produces very regular index data

 Index patterns are easily compressed

Index Decompression

0

1

2

Triangle Indexes

0 21

Index Decompression

2

0

1

Triangle Indexes

2 10

Index Decompression

85% compression

6.5x more triangles

Index Decompression

Blend Shapes

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Skinning

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Skinning on SPUs

void SkinVs(float4 inPosition : ATTR0, float4 weights : ATTR3,

float4 matrixIndex : ATTR4,

out float4 position : POSITION,

uniform float4 joints[72], uniform float4x4 modelViewProj)

{

position = 0;

for (int i = 0; i < 4; i++)

{

float idx = matrixIndex[i];

float3x4 joint = float3x4(joints[idx+0], joints[idx+1],

joints[idx+2]);

position += weights[i] * mul(joint, inPosition);

}

position = mul(modelViewProj, position);

}

Skinning on SPUs

30% Performance Improvement

Skinning on SPUs

30% Performance Improvement

Shadow map generation.... 70%!

Triangle Culling

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Up to 70% of triangles do not contribute to
final image.

Off Screen Triangles

Back Facing Triangles

Zero Area Triangles

Zero Area Triangles

No Pixel Triangles

Triangle Culling

Multisampling adds some complications…

Culled

Triangle Culling

10% to 20%

Performance Improvement

Compression for Output

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Float Tables

When done, the vertex attributes are

compressed into one output stream

Output
Vertex Array

Float Tables

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

Low Level

Geometry Partitioner
Cache-Optimizer

Geometry Runtime Details

“Just in Time” Single Buffer Strategy

 SPUs generate data in same frame as

RSX consumes it

 System tuned so that the RSX rarely

waits on SPUs

 SPU RSX synchronization in place

to handle rare cases

Geometry System

Rendering Sequence

 On the PPU
 Create a SPURS job

 Place most RSX commands in the command
buffer

 Leave space in the RSX command buffer for the
SPU to fill in later

 On the SPU
 Process geometry

 Write final commands to RSX command buffer

Synchronization Techniques

RSX SPU synchronization

by manipulation of put pointer

RSX Best Practices

Thursday 2:30 pm – 3:30 pm

Room 3001, West Hall

RSX SPU synchronization

through “local stalls”

void cellSpursJobMain(CellSpursJobContext* stInfo,

CellSpursJob256 *job)

{

edgeInitialize(...);

edgeDecompressVertexes(...);

edgeProcessBlendShapes(...);

edgeSkinVertexes(...);

edgeDecompressIndexes(...);

edgeTransformVertexesForCull(...);

edgeCullTriangles(...);

if(!edgeAllocateOutputSpace(...))

return;

edgeOutputIndexes();

edgeCompressVertexes();

edgeOutputVertexes();

edgeFillPushBufferHole(...);

}

void WaveVertexes(float *positions, unsigned numVertexes,

float t)

{

for(unsigned i = 0; i < numVertexes; ++i)

positions[i*4+0] +=

sinf(t + positions[i*4+0] +

positions[i*4+1]) * 10.f;

}

void cellSpursJobMain(CellSpursJobContext* stInfo,

CellSpursJob256 *job)

{

edgeInitialize(...);

edgeDecompressVertexes(...);

edgeProcessBlendShapes(...);

edgeSkinVertexes(...);

WaveVertexes(…);

edgeDecompressIndexes(...);

edgeTransformVertexesForCull(...);

edgeCullTriangles(...);

if(!edgeAllocateOutputSpace(...))

return;

edgeOutputIndexes();

edgeCompressVertexes();

edgeOutputVertexes();

edgeFillPushBufferHole(...);

}

Software Pipelined C with

SPU Intrinsics
do

{

m1 = in1;

in1 = si_lqx(pIn1, offset);

m2 = in2;

in2 = si_lqx(pIn2, offset);

m3 = in3;

in3 = si_lqx(pIn3, offset);

temp2 = si_selb(m3, m1, mask_0X00);

si_stqx(out1, pOut1, offset);

temp3 = si_selb(m2, m1, mask_00X0);

si_stqx(out2, pOut2, offset);

temp1 = si_selb(m1, m2, mask_0X00);

si_stqx(out3, pOut3, offset);

offset = si_ai(offset, 0x30);

out2 = si_shufb(m2, temp2, qs_bCaD);

out1 = si_selb(temp1, m3, mask_00X0);

out3 = si_shufb(m3, temp3, qs_caBD);

} while(si_to_int(offset) != 0);

Software Pipelined C with

SPU Intrinsics

20x faster than

straight C/C++

do

{

m1 = in1;

in1 = si_lqx(pIn1, offset);

m2 = in2;

in2 = si_lqx(pIn2, offset);

m3 = in3;

in3 = si_lqx(pIn3, offset);

temp2 = si_selb(m3, m1, mask_0X00);

si_stqx(out1, pOut1, offset);

temp3 = si_selb(m2, m1, mask_00X0);

si_stqx(out2, pOut2, offset);

temp1 = si_selb(m1, m2, mask_0X00);

si_stqx(out3, pOut3, offset);

offset = si_ai(offset, 0x30);

out2 = si_shufb(m2, temp2, qs_bCaD);

out1 = si_selb(temp1, m3, mask_00X0);

out3 = si_shufb(m3, temp3, qs_caBD);

} while(si_to_int(offset) != 0);

EDGE_DECOMPRESS_INIT_GLOBAL(...);

EDGE_DECOMPRESS_INIT_F32(EDGE_ATTRIBUTE_USAGE_POSITION,...);

EDGE_DECOMPRESS_INIT_F16(EDGE_ATTRIBUTE_USAGE_GENERIC,...);

EDGE_DECOMPRESS_LOAD_COMMON();

do

{

EDGE_DECOMPRESS_LOOP_START();

EDGE_DECOMPRESS_LOOP_F32(...);

EDGE_DECOMPRESS_LOOP_F16(...);

EDGE_DECOMPRESS_LOOP_END();

} while (! EDGE_DECOMPRESS_LOOP_DONE());

EDGE_DECOMPRESS_FINALIZE_F32(...);

EDGE_DECOMPRESS_FINALIZE_F16(...);

PLAYSTATION®Edge
Geometry Performance

1 SPU

1 SPU

800,000+
Triangles Per Frame

at 60 Frames per Second

1 SPU

800,000+
Triangles Per Frame

at 60 Frames per Second

60% of which are culled!

PLAYSTATION®Edge

Beta Release

MARCH 2007

GCM Replay
SCE World Wide Studios

GCM Replay

GCM Replay is a new tool for RSX

Analysis

Debugging

Profiling

GCM Replay - Overview

 GCM Replay consists of two parts

 Small PS3 runtime library

 Main Application - runs on a Windows PC + PS3 Dev-Tool

Host PC

GCM Replay

Game + libgcmReplay.a

PS3 Dev-ToolGCM Replay

PS3 Dev-Tool

GCM Replay - Overview

 Uses RSX rather than simulation

 Supports highly detailed analysis

 Far greater than a typical real-time profiler would allow

 Supporting scene-wide analysis

 To the analysis of individual draw calls, vertices and pixels

 Focus on off-line performance analysis features

 Many of which have never been available before

GCM Replay

Workflow and Behind the Scenes

GCM Replay - Overview

 Run your game with the GCM Replay runtime linked in

 Once you reach a point of interest…

Hit Capture

Capturing the Command Buffer

 GCM Replay will traverse the Command Buffer

 Transfer Command Buffer Memory to the PC

 Each command is analysed

Command Buffer

Host PC

GCM Replay

Command Buffer

Memory

Command Buffer

Host PC

GCM Replay

Render Targets

Textures

Graphics Resource

Memory

Capturing the Command Buffer

Geometry

Vertex & Fragment

Programs

Capturing the Command Buffer

 Once the process is complete - GCM Replay

has all the data it needs to

REPLAY your Command Buffer

Capturing the Command Buffer

Command Buffer

Ring Buffer

Character 0

Character 1

Character 2

Character 3

Character 4

Character 5

Character 6

Character 7

Character 8

Character 9

Character 10

Character 11

Character 12

Character 13

 Capturing the Command Buffer can be very complex

Capturing the Command Buffer

 All RSX usage models can be captured with GCM Replay

Command Buffer

Ring Buffer

GCM Replay Integration

 Only takes a few minutes

 At initialisation

// Initialise the capture API

cellGcmReplay::Network::Init();

cellGcmReplay::Capture::Init();

GCM Replay Integration

 Then every frame…

// Call a single heartbeat function

cellGcmReplay::Heartbeat(&yourContext);

 Add optional annotations

// Useful for adding semantics

cellGcmReplay::InsertDebugString(“Bloom Pass”);

GCM Replay Captures

Analyse it immediately

OR

Save for analysis later

GCM Replay Application

GCM Replay

Analysis and Debugging Views

Draw Context View

 Provides primary means of

Command Buffer navigation

 Lists all Draw / Clear calls

 Plus their associated setup

state

Draw Context View

 Expand to see your original

Gcm API calls

 Full source-level disassembly

 Parameter Annotations

 User Annotations

Raw Command Buffer View

 Displays full Command Buffer disassembly

Errors

highlighted

in RED

Problems View

 Summarises all warnings and errors

 Click on problem - jump to offending Draw Context

Render State View

 See all Resources referenced by current Draw Context

 Click on Link Label to select that Resource for previewing

Render Targets View

Render Targets View

Render Targets View

 Puts internal analysis results at your finger tips

 So you can instantly answer…

Render Targets View

 What Draw Contexts write to this Render Target?

 Is this Render Target aliased as a Texture?

 Is this Render Target setup for

 Double-Speed rendering?

 Early-Z optimisation?

Render Target Refresh

Hit Refresh!

Render Target Refresh

1. Transfer Command Buffer and Resources

2. Kick Command Buffer up to the current Draw Context

Allows you to single step your rendering process

Both forwards and backwards in time

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Refresh

Render Target Pixel Analysis

Actual pixel

values written

by RSX

Render Target Memory Dump

Preview Render Target

Modify the Command Buffer before

its kicked

Preview Render Target as Wireframe

Preview Render Target Overdraw

Render State View

 What other Resource types can we select

for analysis?

Textures View

 View referenced Textures

 Including

 State

 Complete Mip-chain

 Cube Faces

 Volume Slices

Vertex Arrays View

Index Arrays View

Draw Data View

 See vertices kicked by current Draw Context

 Each element of each referenced attribute

Vertex Programs View

 Full disassembly

 Stalls highlighted in Red

 Optionally show

 Instruction latencies

 Dual issue

Vertex Program Constants View

 See Vertex Program Constants

 Used by current Draw Context

 Colour-coded by analysis passes

 Blue - newly modified

 Green - inherited from previous

 Red – redundant sets

Fragment Programs View

Fragment Program Debugging

Fragment Program Debugging

Fragment Program Debugging

Fragment Program Debugging

GPU Registers View

 Brief Mode - registers set

in current Draw Context

 Descriptive Mode -

entire register state

 Verify RSX state is what

you expect

Preview Resource Views

 Exist for all Resource types

 Analyse

 Draw Context

 Entire Scene

 All Preview Views have unique features

 Share common functionality - including

 Cross-referencing

 Search

 Memory Dump

 Export

Memory Layout View

 See your Memory map

 Resource locations in

 Local Memory

 Host Memory

Command Buffer Overview

 Command Buffer

breakdown

 Categorised by

Command type

GCM Replay

Profiling Features

GCM Replay Profiling

 Supports a number of flavours

 RSX executes your Command Buffer many times

 Use of RSX hardware counters and timing facilities

Ensures timings and event counts are accurate

Sub-Unit Utilisation

 See % utilisation of each major pipeline unit

Sub-Unit Utilisation

 On a Draw Context basis

 Each utilisation is drawn overlapped

(not stacked)

 Result - a sorted list of optimisation

targets

 Clear indication of the bottleneck

Smallest

utilisation

Biggest

utilisation -

Bottleneck!

Sub-Unit Utilisation

User annotations

mark intervals

Draw Contexts –

selectable for

further analysis

Sub-Unit Utilisation

Zoom into areas

of interest

Performance Counters

 Provide more detail

 Profile additional events

 GCM Replay exposes

 Hardware counters

 Derived counters

 Workflow

 Select counters

 Hit Profile

 Analyse results

Performance Counters

 Multiple counters graphed simultaneously

Highlight counters of interest

Performance Counters

 Raw counters in tabulated form

 Sort on individual keys

 Select Draw Contexts of

interest

Story so far…

 Using GCM Replay you can

Capture

Analyse and Debug

Modify and Replay

Profile

What’s the next BIG question?

How do I make it run faster?

RSX

 Deep and complex pipeline

 Large array of rendering options

 Difficult to predict

 Effects of your engine changes?

 What optimisations matter most?

What-If… I change the anisotropic

filtering level on my race track?

 How much time would that buy back?

 What would it look like?

 What’s the best compromise?

What-If… I re-optimise my meshes?

For example

 Convert triangle strips to triangle lists

 Interleave all attribute streams

 Optimise index tables for all vertex caches

How would these effect RSX performance?

What-If… If I write a near perfect

visibility culler?

 That culls on a per triangle basis

 Removes all triangles outside the viewport

 All back-facing triangles

 Zero-area degenerate triangles

 Micro-triangles that miss all pixel centres

And…

It runs on the SPUs and removes all triangles

before they hit the RSX

How much time would that buy back?

With GCM Replay you can answer all these

questions…

Without touching a single line of code

GCM Replay What-Ifs

 A new form of Conditional Profiling

 Make fundamental changes to your

 Command Buffer

 Resources

 All from within GCM Replay

 Measure observed performance difference

 See % Gain or Loss

What-if… Example

 Through analysis I realise…

 Not all my textures are

compressed

 Not all my textures have a

mip-chain

My Scene

?

What-If… Workflow

 Apply to

 A Draw Context OR all Draw Contexts

 A Resource OR all Resources of that type

Define scope

What-If… Workflow

 Select What-Ifs from a filtered set

Select

What-If
Hit Add

What-If… Workflow

 Optionally tweak What-If parameters

List of What-Ifs

to apply

Hit Profile

What-Ifs – Behind the Scenes

 Profile baseline

 For each What-If condition

 Make modifications

 Profile

 Save results

 In this example

 Generate mip-chains

 Compress Textures

 Modify Texture state in Command Buffer

What-If… Results

 Summarise

 % gain for each What-If

 Comments on actual modifications made

 Total % gain for all What-Ifs

Instantly see the change in performance

What-If… Workflow

 Two options

 Profile – with new What-Ifs, same baseline

 Commit – make new baseline

 Iterate Process

 Performance target reached

 We’re as close as we can get

Incorporate the optimisations into your game

What-If… Remove Redundancy

 What if we remove all redundant commands?

What-If… Optimise FP Constant Patching

 What if all constants are set externally?

 Directly patched by PPU or SPUs

Moroccan Scene Results

 Applying all four What-Ifs…

Complete Texture Mip-chains +11.39%

Compress Textures +0.82%

Remove Global Redundancy +4.09%

Optimise Fragment Constant Patching +4.73%

 Total Performance Gain

~21%
faster than original scene

PLAYSTATION®Edge Demo

What-If… Trim Triangles

 What if we trim all triangles

 Off-screen

 Back facing

 Degenerate

 Don’t hit any pixel centres

 Set scope to all Draw Contexts

 Enable all triangle tests

 Hit Profile

What-If… Trim Triangles

 19% performance gain from Triangle Culling alone

GCM Replay What-Ifs

 Evaluate fundamental engine changes
 Without actually having to make them

 Provide rapid feedback
 See What-If… results within minutes

 Help you make informed decisions
 What optimisations matter most?

 How close are we to theoretical maximums?

 Help avoid wasting time on fruitless changes
 Save precious development time

The What-Ifs
 Global

 Remove Redundancy

 For each Draw Context

 Optimise all Triangle Lists

 Convert Strips to Lists

 Change Stream Interleaving

 Trim Triangles

 Trim Batches

 Depth-only Pass

 Disable unused Attributes

 Disable unused Interpolators

 Sort Batches Front to Back

 Replace with Single Colour FP

 Non-disclosed x3

 Perfect Early-Z Settings

 Convert to Indexed Drawing

 Disable unused Clear Components

 Remove redundant Clears

 Remove completely filled Clears

 Remove non-varying Attributes

 For each Render Target

 Remove redundancy

 Non-disclosed

 For each Texture

 Switch Memory Context

 Remove redundancy

 Convert to DXT1

 Convert to DXT5

 Complete mip-chain

 Override filtering modes

 Override LOD bias

 For each Vertex Program

 Remove redundancy

 Non-disclosed

 For each Fragment Program

 Optimise Constant Patching

 Remove redundancy

 Non-disclosed x2

GCM Replay Experiments

 Extend the What-If concept

 Experiments – automatically replay selected

What-Ifs with many times

 Finds the optimal settings for your game

 Example – Texture Placement Experiment

GCM Replay – The Future

 More What-Ifs

 More Experiments

 Extend Edit-and-Continue

Modify all Resource types

Hot-load replacement Resources

 Vertex and Fragment Program Debugging

GCM Replay

BETA Release - March 2007

