

PLAYSTATION®Edge

PLAYSTATION®Edge

Mark Cerny

Jon Olick

Vince Diesi

ICE Team
WWS America

Advanced Technology Group
WWS Europe

Tools and Technology
WWS America

Mark Cerny

Jon Olick

Vince Diesi

GCM Replay

>March release

>RSX Performance Analysis

>Speculative Performance Analysis

PLAYSTATION®Edge Philosophy

>Discrete pieces of technology

>Targeted for easy adoption

>Show first party best practices

PLAYSTATION®Edge

Component Overview

> Animation System

>Geometry Processing

>Compression

>GCM Replay

PLAYSTATION®Edge

Component Overview

> Animation System

>Blend trees of arbitrary depth

>Several layers of compression

>High performance

>Very flexible

PLAYSTATION®Edge

Component Overview

>Geometry Processing

>Skinning on SPUs

>Offload the RSX

> Triangle Culling on SPUs

>Remove unnecessary RSX processing

>Blend Shapes on SPUs

>Offload the PPU

>Compressed Data formats

>SPUs can use better data compression than the RSX

PLAYSTATION®Edge

Component Overview

>Compression

> Fast zlib decompression implemented for the

SPUs

> Increases effective bandwidth

from BD-ROM

>Useful for high speed streaming

> 40MB/sec with ~25% of an SPU

PLAYSTATION®Edge

Component Overview

>GCM Replay

>New tool for use with the RSX

>Analysis

>Debugging

>Profiling

> Full source code available

PLAYSTATION®Edge

Component Overview

>SPU code

>Runs as SPURS jobs

>C with Intrinsics

>PPU and tools code written in C with some C++

> libGCM used as RSX interface

PLAYSTATION®Edge

Component Overview

>Offline Tools Pipeline

>Generates binary data used by animation and

geometry runtime

>Collada compatible pipeline

>Multi-layered approach

>Will be released as part of the PlayStation 3

SDK to all licensed developers

PLAYSTATION®Edge

Component Overview

PLAYSTATION®Edge

Animation

Animation Processing

Game
Logic

Animation Processing

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

SPU

PPU

Animation Processing

Low Level Operation Execution

Low Level Operation
List Generation

Blending Tree
Generation

Game
Logic

PPU

SPU

SPU Capture

no significant

DMA stall

Low Level

Functions

Blend Tree Parsing,

Flow Control

Additional Features

> Additive Blending

> Partial Animations

>Per-joint weight

>Compression

>Static joint parameters removed

>Varying joint parameters expressed as

sparse keyframes

Varying parameter treatment

Varying parameter treatment

Varying parameter treatment

Offline Tools Layout

Offline Tools Layout

> Tools generate

> Joint hierarchy

>Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

> Tools generate

> Joint hierarchy

>Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

> Tools generate

> Joint hierarchy

>Compressed animation data

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

Low Level

Animation Partitioner
Compression Tools

> Tools generate

> Joint hierarchy

>Compressed animation data

PLAYSTATION®Edge

Geometry

Two modes of usage

> Primary mode

>Use PLAYSTATION®Edge offline tools

>Partition into vertex sets

>Use indexed triangles

>All features of pipeline can be used

SPU

Two modes of usage (cont)

> Secondary mode

>Data generated by other tools

> Formats other than indexed triangles

>Non-partitioned objects

>Subset of pipeline features can be used

SPU

SPU Geometry Pipeline Stages

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Vertex Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Vertex attributes can be input into the

SPUs in multiple arrays

Unique Vertex
Array 0

Instance Vertex
Array 1

Vertex information is decompressed

into tables of floats

Float TablesUnique Vertex
Array 0

Instance Vertex
Array 1

24bit Unit Vector

> Smallest 2 compression
> Two smallest components with 10 bits each

>Encoded from ïsqrt(2)/2 to +sqrt(2)/2

> Largest component reconstructed via
>Largest = sqrt(1 ïsmallestA2ïsmallestB2)

24bit Unit Vector

> Smallest 2 compression
> Two smallest components with 10 bits each

>Encoded from ïsqrt(2)/2 to +sqrt(2)/2

> Largest component reconstructed via
>Largest = sqrt(1 ïsmallestA2ïsmallestB2)

>One additional bit to represent W as +1 or -1
> For constructing bi-normal from normal and

tangent.

N-bit Fixed Point
with integer offsets

> Simple n.x fixed point values
>Per-segment integer offset

> Bit count may vary from attribute to
attribute

Index Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Index Table Construction

> Index table is created by a vertex cache

optimizer

RSX Best Practices

Thursday 2:30 pm ï3:30 pm

Room 3001, West Hall

>Supplied in PlayStation 3 SDK

> First party research

> Importance of mini-cache

Index Buffer Cache Optimizer

Index Decompression

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Index Decompression

> Provided vertex cache optimizer

produces very regular index data

> Index patterns are easily compressed

Index Decompression

0

1

2

Triangle Indexes

0 21

Index Decompression

2

0

1

Triangle Indexes

2 10

Index Decompression

85% compression

6.5x more triangles

Index Decompression

Blend Shapes

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Skinning

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Skinning on SPUs

void SkinVs(float 4 inPosition : ATTR0, float4 weights : ATTR3,

float4 matrixIndex : ATTR4,

out float4 position : POSITION,

uniform float4 joints[72], uniform float4x4 modelViewProj)

{

position = 0;

for (int i = 0; i < 4; i++)

{

float idx = matrixIndex[i];

float3x4 joint = float3x4 (joints[idx+0], joints[idx+1],

joints[idx+2]);

position += weights[i] * mul(joint, inPosition);

}

position = mul(modelViewProj, position);

}

Skinning on SPUs

30% Performance Improvement

Skinning on SPUs

30% Performance Improvement

Shadow map generation.... 70%!

Triangle Culling

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Up to 70% of triangles do not contribute to
final image.

Off Screen Triangles

Back Facing Triangles

Zero Area Triangles

Zero Area Triangles

No Pixel Triangles

Triangle Culling

Multisampling adds some complicationsé

Culled

Triangle Culling

10% to 20%

Performance Improvement

Compression for Output

Index Decompress

Blend Shapes

Skinning

Triangle Culling

Compression

Vertex Decompress

Output

SPU Pipeline

Float Tables

When done, the vertex attributes are

compressed into one output stream

Output
Vertex Array

Float Tables

Offline Tools Layout

High Level

Standalone Executable

Mid Level

Utility Functions
Collada Framework

Low Level

Geometry Partitioner
Cache-Optimizer

