

RSX™ Best Practices

Mark Cerny, Cerny Games

David Simpson, Naughty Dog

Jon Olick, Naughty Dog

RSX™ Best Practices

 About libgcm

 Using the SPUs with the RSX™

 Brief overview of GCM Replay

December 7th, 2004

Sony Computer Entertainment and NVidia
announce joint development of RSX™

Vertex & Index

Buffers

Textures

Fragment Programs

PLAYSTATION®2 Command List

Command

List

Vertex Table

Index Table

PLAYSTATION®2 Command

List Construction

PLAYSTATION®3 Command Buffer
Render Targets

Textures

Vertex & Fragment

Programs

Vertex & Index

Buffers

Command

Buffer

State in OpenGL

glStencilOp(GL_KEEP,GL_KEEP,GL_DECR_WRAP_EXT);

glActiveStencilFaceEXT(GL_BACK);

glActiveStencilFaceEXT(GL_FRONT);

glStencilOp(GL_KEEP,GL_KEEP,GL_INCR_WRAP_EXT);

glStencilOp(GL_KEEP,GL_KEEP,GL_DECR_WRAP_EXT);

More State in OpenGL

glClearDepth(depth);

glClearStencil(s);

glClear(GL_DEPTH | GL_STENCIL)

glClearDepth(depth);

glClearStencil(s);

glClear(GL_DEPTH | GL_STENCIL)

Goals with libgcm

Goals with libgcm

 Support multiple buckets

Goals with libgcm

 Support multiple buckets

 Remove state

Goals with libgcm

 Support multiple buckets

 Remove state

 glClearDepth and glClearStencil become a

single function

libgcm Context Structure

libgcm Context Structure

Start

End

libgcm Context Structure

Write Location

Start

End

libgcm Context Structure

Write Location

Start

End

Callback generated when out of space

Jump

Jump

Jump

Multiple Buffers

Jump

Jump

Single Large Buffer

Jump

Heap

Virtual Buckets

Write Location, Bucket 2

Write Location, Bucket 1

Heap

Virtual Buckets

Write Location, Bucket 1

Write Location, Bucket 2

Heap

Virtual Buckets

New allocation
for bucket 1,
connected by

jump

Write Location, Bucket 2

Write Location, Bucket 1

Heap

Virtual Buckets

New allocation
for bucket 2,
connected by

jump

Write Location, Bucket 2

Write Location, Bucket 1

Context Types

 Space Checking

 No Space Checking

Set Alpha Blend

Space Checking 5.0x

No Space Checking 1.1x

Setup Texture for Shader

Space Checking 1.8x

No Space Checking 1.8x

Space Checking

Set up Alpha Blend

1.1x

Set up Texture for Shader

1.05x

Patch Static Command Buffer

Disable Draw

Set Shader Constants

Set Shader Constants

Disable Draw

Set Shader Constants

Disable Draw

Concatenate Static Command

Buffers
Set Shader Constants

Set Shader Constants

Set Shader Constants

Set Shader Constants

Set Shader Constants

Using the RSX™ with the

SPUs

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

RSX™

Using the RSX™ with the

SPUs

 SPUs can be used to supercharge vertex

processing on the RSX™

 SPUs can perform triangle and mesh

operations that cannot be performed on

the RSX™

Geometry Processing Pipeline

 Runs on SPUs

 Modular

 Need only to use some pieces

 Outputs index and vertex data

which is directly read by the

RSX™

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

Geometry Processing Pipeline

 SPU processes one vertex set

at a time

 One or more vertex sets are

generated per mesh in an offline

tools processing step called

partitioning

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

The RSX™ can process vertices in

large chunks

But a 50,000 vertex object won’t fit in

an SPU!

SPU

The object needs to be partitioned into

smaller pieces, called vertex sets

SPU

Culling is much better with smaller

pieces too

SPU

On the PLAYSTATION®2 we used

vertex sets with about 64 vertices

 Many repeated

vertices

 Data increase of about

30%

An SPU can handle vertex sets with

between 500-1500 vertices

 Still some repeated

vertices

 Data increase of about

7-10%

 Vertex data is

ultimately smaller due

to increased

compression

Decompression

 SPUs free to use any type of

compressed data – not

restricted to 8, 16, 32 bit or the

like

 Vertex data is decompressed

into full floats, as they are

easiest for the SPU to use

 Triangle index data can also

be decompressed at this time

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

N-Bit Stream Decompression

 Each vertex attribute is an N-bit stream

 Each component of that attribute has its own

number of bits, integer offset, scale, and bias

 Each component is decompressed with

the following equation:

 out = float(in + intOffset) * scale + bias

 Scale and bias need to be constant across an

entire object to prevent cracks

 The number of bits and integer offset need not be

Integer Offset Example

 The total range of this object is

21 units

 Requires 5 bits

 The range of the first list is

only 15 units

 Requires only 4 bits

 The range of the second list is

8 units

 When intOffset is set to 13,

entries in the second list require

only 3 bits

Object

List 1

1

5

12

0

8

3

14

9

List 2

17

14

20

16

13

19

18

Blend Shapes

 Not really possible to do on a

GPU

 SPU can blend any number of

shapes and any number of

vertex attributes

 Large data savings

 Store only deltas

 Use highly compressed data

formats, like N-bit compression

 Only store data for changing

vertices

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

Blend Shape Use in

MLB 07: The Show

Skinning

 Huge offload of vertex

processing from the RSX™

 No need to set large number

of vertex program constants

with matrix data

 SPU can handle vertices with

an arbitrary number of

influences

 Number of influences can vary

across the mesh, resulting in

data and computational savings

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

LOD Systems

 Reduces processing time as

an object moves into the

distance

 Many LOD systems are not a

good match for a GPU

 Often operate upon an entire

mesh at a time

 Good match for the SPUs

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

Discrete Progressive Mesh

 Smoothly reduces the triangle

count as a model moves into

the distance

 With discrete progressive

mesh, the LOD calculation is

done once for an entire object

 An entire object is processed

at once by the tools to avoid

cracks between vertex sets

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

At an LOD there are two types of

vertices

LOD = 0.0

Parent Vertex

Child Vertex

As the LOD level decreases, the

children “slide” towards their parents

LOD = 0.2

Parent Vertex

Child Vertex

The children continue to move

towards their parents

LOD = 0.7

Parent Vertex

Child Vertex

At the next integral LOD, all child

vertices disappear as do the triangles

LOD = 1.0

Parent Vertex

Child Vertex

Vertices are arranged from lowest

LOD to highest LOD

 At LOD 0 all vertices are

needed.

 At LOD 1, child vertices from

LOD 0 are no longer needed

 At LOD 2, child vertices from

LOD 1 are also removed

 This saves bandwidth to the

SPUsLOD 0

LOD 1

LOD 2

Vertex Table

Every LOD has its own index table of

triangles and parent table

 The parent table contains an index to the parent

for every child vertex

Indexes for

LOD 0

Indexes for

LOD 1

Indexes for

LOD 2

Parent Table for

LOD 2

Parent Table for

LOD 1

Parent Table for

LOD 0

LODs are arranged in LOD groups to

avoid small vertex sets

LOD 0

LOD 1

LOD 2

LOD 0

LOD 1

LOD 2

LOD Group 0

LOD 0

LOD 1

LOD 2

LOD 3

LOD 4

LOD 5

LOD Group 1

Continuous Progressive Mesh

 Like discrete progressive

mesh, child vertices move

smoothly toward their parents

 However, the LOD is

calculated for each vertex

instead of just once for the

object

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

Vertex set about to undergo

continuous progressive mesh

Parent Vertex

Child Vertex, LOD 1

Child Vertex, LOD 0

A single vertex set can straddle

several LOD ranges

LOD = 1.0

Parent Vertex

Child Vertex, LOD 1

Child Vertex, LOD 0

LOD = 0.0

Vertices move depending on their

distance

Parent Vertex

Child Vertex, LOD 1

Child Vertex, LOD 0

LOD = 1.0

LOD = 0.0

Stencil Shadows

Edge

Table

T14 T15 V1

T6 T23 V0

T10 T18 V2

V0T10T2

V0T8T0

V1T6T5

V2T26T5

V0T13T4

V2T17T15

V1T25T11

T14 T15 V1

Also need adjoining triangles and

vertices from neighboring vertex sets

Edge

Table

T14 T15 V1

T6 T23 V0

T10 T18 V2

V0T10T2

V0T8T0

V1T6T5

V2T26T5

V0T13T4

V2T17T15

V1T25T11

Find the profile edges and generate a

new vertex table of extruded edges

Extruded Edges

T14 T15 V1

T6 T23 V0

T10 T18 V2

V0T10T2

V0T8T0

V1T6T5

V2T26T5

V0T13T4

V2T17T15

V1T25T11

Edge

Table

Output the new vertex data and draw

commands to a shadow context

Command

Context for

Light 0

Shadow

Draw 13

Shadow

Draw 19

Shadow

Draw 18

SPU

May as well do multiple lights at the

same time

Command

Context for

Light 0

Shadow

Draw 13

Shadow

Draw 19

Shadow

Draw 18

SPU

Shadow

Draw 11

Shadow

Draw 19

Shadow

Draw 12

Shadow

Draw 13

Shadow

Draw 19

Shadow

Draw 18

Shadow

Draw 15

Shadow

Draw 19

Shadow

Draw 16

Command

Context for

Light 1

Command

Context for

Light 2

Command

Context for

Light 3

Normal and Tangent

Calculation

 Typically having normals and tangents

included in the vertex data is a good

thing

 However, some operations can move the

positions so much that the included

normals and tangents are no longer

correct

 Solution: Recalculate the normals and

tangents on the SPU!

Blend shapes can move the positions

quite a lot!

Recalculate the normals!

 Like stencil shadows,

calculating normals and

tangents requires information

about adjoining triangles and

vertices from neighboring

vertex sets

 Only worth the cost in limited

situations

Triangle Culling

 Many triangles in a scene will

ultimately have no renderable

area

 Culling these triangles on the

SPU removes the burden of

the RSX™ processing

triangles which do not

contribute to the final image

 This leaves the RSX™ with more

time to process relevant triangles

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

What types of triangles can be culled?

Off screen triangles can be culled

Back facing triangles can be culled,

but be sure to use error bars

Degenerate triangles can be culled

Some triangles are very small

Some triangles are so small that they

do not cover a pixel center

These triangles can be culled

Multisampling adds some

complications…

But these triangles can still be culled

The SPU starts with the input triangle

index table

Tri 0

Tri 1

Tri 2

Tri 3

Tri 4

Tri 5

Tri 6

Tri 7

Tri 8

Tri 9

Tri 10

Tri 11

Tri 12

Tri 13

Tri 14

Original

Index Table

The culling algorithm determines

which triangles are to be kept

Tri 0

Tri 1

Tri 2

Tri 3

Tri 4

Tri 5

Tri 6

Tri 7

Tri 8

Tri 9

Tri 10

Tri 11

Tri 12

Tri 13

Tri 14

Original

Index Table

And a new index table is created from

these triangles

Tri 0

Tri 1

Tri 2

Tri 3

Tri 4

Tri 5

Tri 6

Tri 7

Tri 8

Tri 9

Tri 10

Tri 11

Tri 12

Tri 13

Tri 14

Original

Index Table

Tri 1

Tri 4

Tri 6

Tri 7

Tri 11

Tri 14

Culled

Index Table

Culling can

remove 60-70%

of all triangles!

Vertex Culling

 After triangles are culled,

some vertices are no longer

used in any triangle

 These vertices can be

removed from the vertex table

 This is done by first building a

vertex renaming table which

contains the new vertex index for

each vertex

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

Start with an empty vertex renaming

table

4

5

6

7

8

9

10

11

12

13

14

15

3

2

1

0

Index Table Vertex Table

Renaming

Table

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0 2 5

1 4 10

1 8 13

2 5 7

5 7 8

7 8 9

8 10 13

10 13 14

Add a new index for each used vertex

in the index table

4

5

6

7

8

9

10

11

12

13

14

15

3

2

1

00 2 5

1 4 10

1 8 13

2 5 7

5 7 8

7 8 9

8 10 13

10 13 14

Index Table Vertex Table

Renaming

Table

0

3

1

-1

4

2

-1

8

6

9

5

-1

-1

7

10

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

3

1

4

2

8

6

9

5

7

10

Using the renaming table, build a new

vertex table with only used vertices

4

5

6

7

8

9

10

11

12

13

14

15

3

2

1

0

Vertex Table

Renaming

Table

0

3

1

-1

4

2

-1

8

6

9

5

-1

-1

7

10

-1

4

10

8

13

7

9

14

1

5

2

0

New Vertex TableIndex Table

0 2 5

1 4 10

1 8 13

2 5 7

5 7 8

7 8 9

8 10 13

10 13 14

Finally, replace the old indices in the

index table with the new indices

New Vertex TableIndex Table

Renaming

Table

0

3

1

-1

4

2

-1

8

6

9

5

-1

-1

7

10

-1

4

10

8

13

7

9

14

1

5

2

0

4

5

6

7

8

9

10

11

12

13

14

15

3

2

1

0

Vertex Table

0 2 5

1 4 10

1 8 13

2 5 7

5 7 8

7 8 9

8 10 13

10 13 14

0 1 2

3 4 5

3 6 7

1 2 8

5 7 8

8 6 9

6 5 7

5 7 10

Only minor performance gains on the

RSX™, if any

 Removes about 30% of the vertex data

 Better use of the pre-transform cache,

but not much else

Vertex Stream Combining

 A vertex stream is an

interleaved set of vertex

attributes, which is used

natively by the RSX™

 Fewer vertex streams results

in better performance

 Easy to combine streams

while compressing vertex

attributes into RSX™ formats

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

Vertex attributes can be input into the

SPUs in multiple streams

Input Vertex

Stream 0

Input Vertex

Stream 1

The vertex streams are

decompressed into tables of floats

Input Vertex

Stream 0

Input Vertex

Stream 1

Float Tables

When done, the vertex attributes are

compressed into one output stream

Input Vertex

Stream 0

Output

Vertex Stream

Float Tables

Input Vertex

Stream 1

Output Buffering Schemes

 Vertex and index data

constructed by the SPUs is

output from SPU local store

 Holes in the command buffer

are patched with pointers to

the vertex and index data as

well as the draw commands

Decompression

Blend Shapes

Skinning

Progressive Mesh

Culling

Compression

Output

Double Buffer

 Each buffer stores vertex and

index data for an entire frame

 SPUs atomically access a

mutex which is used to

allocate memory from a buffer

 Easy synchronization with the

RSX™ once a frame

 Uses lots of memory

Vertex

and

Index

Data

for

Frame 0

Vertex

and

Index

Data

for

Frame 1

It is possible to completely fill a buffer

 Can use a callback to allocate

new memory (which you may

not have)

 Don’t draw geometry that

doesn’t fit (difficult to pick

which geometry not to draw)

SPUData

Vertex

and

Index

Data

Double buffer requires an extra frame

of lag in the rendering pipeline

Build Jobs

on PPU

Process Jobs

on SPU

Render on

RSX™
Scan Out

Build Jobs

on PPU

Process Jobs

on SPU

Render on

RSX™
Scan Out

Build Jobs

on PPU

Process Jobs

on SPU

Render on

RSX™
Scan Out

Single Buffer

 Uses only half the memory!

 Still possible to completely fill

the buffer

Vertex

and

Index

Data

for

Single

Frame

Single buffer uses a shorter rendering

pipeline

 Vertex and index data is created just-in-time for

the RSX™

 Draw commands are inserted into the command

buffer while the RSX™ is rendering

 Requires tight SPU↔RSX™ synchronization

Build Jobs on

PPU

SPU Processing/

RSX™ Rendering
Scan Out

Build Jobs on

PPU

SPU Processing/

RSX™ Rendering
Scan Out

Build Jobs on

PPU

SPU Processing/

RSX™ Rendering
Scan Out

Command Buffer Holes

 SPU processing requires

some setup by the PPU

 Some job data is required for

each vertex set

 Static portions of the command

buffer are built on the PPU

 Static vertex attribute pointers

 Index table pointer and draw

commands when not performing

triangle culling on the SPU

 “Holes” are left for the dynamic

portion built by the SPU

Static 18

Other

State

State

Hole 18

Hole 19

Hole 20

Hole 21

Hole 22

Static 19

Static 20

Static 21

Static 22

Command

Buffer

Filling the Holes

 Dynamic portions are built on

the SPU

 Vertex attribute pointers for any

attributes output by the SPU

 Draw commands when

performing triangle culling

 Commands necessary for ring

buffer synchronization

 For brevity, we will not show

the PPU generated commands

going forward

Static 18

Other

State

State

Static 19

Static 20

Static 21

Static 22

Command

Buffer

Hole 18

Hole 19

Hole 20

Hole 21

Hole 22

Draw 18

Draw 19

Draw 20

Draw 21

Draw 22

RSX™ Put Pointer

 RSX™ has an internal “Put

Pointer”

 Commands in the command

buffer are executed up to the

Put Pointer

 Commands after the Put

Pointer are not executed

Command

Buffer

Put

Pointer

Put

Pointer

SPU↔RSX™ Synchronization

Using the Put Pointer
Command

Buffer

Output

Buffer

SPU

Draw 17 Data 17

Put

Pointer

SPU outputs vertex and index data

Command

Buffer

Output

Buffer

SPU

Draw 17 Data 17

Data 18

Put

Pointer

SPU outputs vertex attribute pointers

and draw commands

Command

Buffer

Output

Buffer

SPU

Draw 17 Data 17

Data 18Draw 18

Put

Pointer

SPU updates the Put Pointer

Command

Buffer

Output

Buffer

SPU

Draw 17 Data 17

Data 18Draw 18

Put

Pointer

But there are six SPUs, so

who updates the Put Pointer?

Command

Buffer

Output

Buffer

SPU 0Draw 17 Data 17

Data 21Draw 18

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Draw 19

Draw 20

Draw 21

Draw 22

Draw 23

Data 19

Data 18

Data 20

Data 23

Data 22

Other

Put

Pointer

SPUs are asynchronous, so they can

finish in any order!

Command

Buffer

Output

Buffer

SPU 0Draw 17 Data 17

Data 21

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Draw 21

Other

Put

Pointer

So, the SPUs must synchronize with

each other!

Command

Buffer

Output

Buffer

SPU 0Draw 17 Data 17

Data 19
SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Draw 21

Draw 19

Data 21

Other

The Put Pointer is updated only when

ALL previous jobs are done…

Command

Buffer

Output

Buffer

SPU 0Draw 17 Data 17

Data 18

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Draw 21

Draw 18 Data 21

Draw 19 Data 19

Put

Pointer

Other

But can only be moved to the end of

this job’s draw commands

Command

Buffer

Output

Buffer

SPU 0Draw 17 Data 17

Data 20

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Draw 21

Draw 20

Data 21

Draw 19

Data 18
Put

Pointer

Draw 18

Data 19

Other

Remember to guarantee progress!

Command

Buffer

Output

Buffer

SPU 0Draw 17 Data 17

Data 23

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Draw 21

Draw 23

Data 21

Draw 19

Data 18
Put

Pointer

Draw 18

Data 19

Draw 20

Data 20

Other

The last job finished moves the Put

Pointer to the end of the buffer

Command

Buffer

Output

Buffer

SPU 0Draw 17 Data 17

Data 22

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Draw 21

Draw 22

Data 21

Draw 19

Data 18

Put

Pointer

Draw 18

Data 19

Draw 20

Data 20

Other

Draw 23

Data 23

SPU↔RSX™ Synchronization

Using Local Stalls
Command

Buffer

Draw 17

Put

Pointer

Local Stall

Other

Local Stall

Local Stall

Local Stall

Local Stall

Local Stall

 Easier and faster than Put

Pointer synchronization

 Place local stalls in the

command buffer where

necessary

 RSX™ will stop processing at

a local stall until it is

overwritten by new commands

 SPUs will generally stay

ahead of the RSX™, so stalls

rarely occur

Local Stall

SPU will overwrite local stalls when it

outputs a set of new commands

 No SPU↔SPU

synchronization required!

 Please see the document

regarding this technique on

the PS3 Developer’s Support

website for crucial details

SPU

Command

Buffer

Draw 17

Put

Pointer

Local Stall

Other

Local Stall

Local Stall

Local Stall

Local Stall

Local Stall

Local Stall

New

Commands

Ring Buffers

 Small memory footprint

 Will not run out of memory

 Can stall the SPUs if buffers

become full

 Objects need to be processed

in the same order the RSX™

renders them to prevent

deadlock

Vertex

and

Index

Data

End of

Free Area

Start of

Free Area

Each SPU has its own buffer to

prevent deadlock

Data 23

Data 17

Data 10

Data 22

Data 11

Data 16

Data 19

Data 6

Data 14 Data 20

Data 7

Data 15

Data 21

Data 12

Data 9

Data 18

Data 8

Data 13

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Buffer 0 Buffer 1

Buffer 3
Buffer 2

Buffer 4 Buffer 5

RSX™ writes a semaphore once a

chunk of data has been consumed

 A command to write a semaphore needs to be

added to the command buffer after all

commands that use the data

 The value of the semaphore to be written is the new

end of free area pointer

Data 19

Data 6

Data 14

Start of

Free Area

Draw 6

Draw 5

Draw 7

Semaphore

Semaphore

Semaphore

Current

RSX™

Execution

New End

of Free

Area

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

RSX™

Future Work

 Cg compiler for SPUs

 Complicated vertex programs could be run

on the SPUs instead of the RSX™

 Can’t have too many outputs otherwise the

RSX™ will take longer loading them than it

would have to run the program

Future Work

 Shadow map generation on SPUs

 Large load removed from RSX™

 Very doable

Much more complicated if you have alpha cutouts

in your textures

GCM Replay

GCM Replay

 New tool for use with the RSX™

 Analysis

 Debugging

 Profiling

 Will be released soon to all licensed

developers as part of PLAYSTATION®Edge

 Main tool runs on the PC

 Integration into your title is simple and easy

Capture a Snapshot

Render Targets

Textures

Vertex & Fragment

Programs

Vertex & Index Buffers

Snapshot Contents

Command

Buffer

Performance Analysis

Find Bottlenecks

“What Ifs”

Q: What If I Had Efficient

Triangle Culling?

What would the performance gain be?

 GCM Replay can remove all draw calls to

triangles which never write a pixel

 Once this is done, GCM Replay can reprofile the

snapshot and compute the speed increase

A: Cull Triangles Using an

SPU!

 Triangle culling techniques shown earlier

can dramatically increase performance

Q: What If My Setting of Fragment

Program Constants Was Done

Externally to the Command Buffer?

 One copy of each fragment

program is kept in memory

 Individual fragment program

constants are patched by placing

draw commands in the command

buffer in the appropriate locations

Fragment

Program

Patched

Constants

Conventional Patch Technique

A: Patch Using the PPU or

SPU!

 Multiple copies of fragment

programs can be patched with

the appropriate constants

either on the PPU or an SPU

 Removes 100% of the RSX™

load for patching fragment

programs

 If done as part of SPU processing

of a vertex set, synchronization

will be already be taken care of

Patched

Copy 3

Patched

Copy 2

Patched

Copy 4

Patched

Copy 1

Q: What If I Had More Optimal

Indexed Triangle Lists?

A: Optimize for the Four Vertex

Mini-cache!

 GCM Replay contains an

optimizer for indexed triangle list

ordering

 Corresponding offline indexed

triangle list optimizer available as

part of PLAYSTATION®Edge

Vertex 1

Vertex 0

Vertex 2

Vertex 3

Four Vertex

Mini-cache

Strip Example

3 new vertices

3

Strip Example

3

1

1 new vertex

Strip Example

3

1
1

1 new vertex

Strip Example

3

1
1

1

1 new vertex…

2 vertices + 1 per triangle in total

Free Form Example

3 new vertices

3

Free Form Example

1 new vertex

3

1

Free Form Example

1 new vertex

3

1

1

Free Form Example

1 new vertex

3

1

1

1

Free Form Example

1 new vertex

3

1

1

1

1

Free Form Example

0 new vertices!

3

1

1

1

1

0

Free Form Example

1 new vertex

3

1

1

1

1

0

1

Free Form Example

1 new vertex

3

1

1

1

1

0

1

1

Free Form Example

1 new vertex

3

1

1

1

1

0

1

1

1

Free Form Example

0 new vertices…

3

1

1

1

1

0

1

1

1

0

2 vertices + 3 per 4 triangles in total

Q: What If I Had Perfect

Object Z-Culling?

 Some objects will not contribute to the

final scene because they are entirely

blocked by other objects

 GCM Replay will soon be able to show

the performance difference if good object

Z-culling was performed

A: Object Z-Culling on SPUs

 Write an SPU rasterizer

 Render the depth values of a low polygon

version of the environment

 Rasterize and check bounding volumes

of objects

Warhawk

